On Hamiltonian elliptic systems with exponential growth in dimension two
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study...
Main Author: | |
---|---|
Other Authors: | |
Language: | English |
Published: |
Universidade de São Paulo
2017
|
Subjects: | |
Online Access: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/ |
id |
ndltd-IBICT-oai-teses.usp.br-tde-02082017-150001 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IBICT-oai-teses.usp.br-tde-02082017-1500012019-01-21T23:54:06Z On Hamiltonian elliptic systems with exponential growth in dimension two Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão dois Yony Raúl Santaria Leuyacc Sérgio Henrique Monari Soares Raquel Lehrer Ederson Moreira dos Santos Jefferson Abrantes dos Santos Crescimento exponencial Desigualdade de Trudinger - Moser Espaços de Lorent-Sobolev Métodos variacionais Sistemas hamiltonianos Exponential growth Hamiltonian systems Lorentz-Sobolev spaces Trudinger-Moser inequality Variational methods In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita. 2017-06-23 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/ eng info:eu-repo/semantics/openAccess Universidade de São Paulo Matemática USP BR reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo instacron:USP |
collection |
NDLTD |
language |
English |
sources |
NDLTD |
topic |
Crescimento exponencial
Desigualdade de Trudinger - Moser Espaços de Lorent-Sobolev Métodos variacionais Sistemas hamiltonianos Exponential growth Hamiltonian systems Lorentz-Sobolev spaces Trudinger-Moser inequality Variational methods |
spellingShingle |
Crescimento exponencial
Desigualdade de Trudinger - Moser Espaços de Lorent-Sobolev Métodos variacionais Sistemas hamiltonianos Exponential growth Hamiltonian systems Lorentz-Sobolev spaces Trudinger-Moser inequality Variational methods Yony Raúl Santaria Leuyacc On Hamiltonian elliptic systems with exponential growth in dimension two |
description |
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.
===
Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.
|
author2 |
Sérgio Henrique Monari Soares |
author_facet |
Sérgio Henrique Monari Soares Yony Raúl Santaria Leuyacc |
author |
Yony Raúl Santaria Leuyacc |
author_sort |
Yony Raúl Santaria Leuyacc |
title |
On Hamiltonian elliptic systems with exponential growth in dimension two
|
title_short |
On Hamiltonian elliptic systems with exponential growth in dimension two
|
title_full |
On Hamiltonian elliptic systems with exponential growth in dimension two
|
title_fullStr |
On Hamiltonian elliptic systems with exponential growth in dimension two
|
title_full_unstemmed |
On Hamiltonian elliptic systems with exponential growth in dimension two
|
title_sort |
on hamiltonian elliptic systems with exponential growth in dimension two |
publisher |
Universidade de São Paulo |
publishDate |
2017 |
url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02082017-150001/ |
work_keys_str_mv |
AT yonyraulsantarialeuyacc onhamiltonianellipticsystemswithexponentialgrowthindimensiontwo AT yonyraulsantarialeuyacc sistemaselipticoshamiltonianoscomcrescimentoexponencialemdimensaodois |
_version_ |
1718913778407440384 |