Time series data mining using complex networks

A time series is a time-ordered dataset. Due to its ubiquity, time series analysis is interesting for many scientific fields. Time series data mining is a research area that is intended to extract information from these time-related data. To achieve it, different models are used to describe seri...

Full description

Bibliographic Details
Main Author: Leonardo Nascimento Ferreira
Other Authors: Zhao Liang
Language:English
Published: Universidade de São Paulo 2017
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01022018-144118/
Description
Summary:A time series is a time-ordered dataset. Due to its ubiquity, time series analysis is interesting for many scientific fields. Time series data mining is a research area that is intended to extract information from these time-related data. To achieve it, different models are used to describe series and search for patterns. One approach for modeling temporal data is by using complex networks. In this case, temporal data are mapped to a topological space that allows data exploration using network techniques. In this thesis, we present solutions for time series data mining tasks using complex networks. The primary goal was to evaluate the benefits of using network theory to extract information from temporal data. We focused on three mining tasks. (1) In the clustering task, we represented every time series by a vertex and we connected vertices that represent similar time series. We used community detection algorithms to cluster similar series. Results show that this approach presents better results than traditional clustering results. (2) In the classification task, we mapped every labeled time series in a database to a visibility graph. We performed classification by transforming an unlabeled time series to a visibility graph and comparing it to the labeled graphs using a distance function. The new label is the most frequent label in the k-nearest graphs. (3) In the periodicity detection task, we first transform a time series into a visibility graph. Local maxima in a time series are usually mapped to highly connected vertices that link two communities. We used the community structure to propose a periodicity detection algorithm in time series. This method is robust to noisy data and does not require parameters. With the methods and results presented in this thesis, we conclude that network science is beneficial to time series data mining. Moreover, this approach can provide better results than traditional methods. It is a new form of extracting information from time series and can be easily extended to other tasks. === Séries temporais são conjuntos de dados ordenados no tempo. Devido à ubiquidade desses dados, seu estudo é interessante para muitos campos da ciência. A mineração de dados temporais é uma área de pesquisa que tem como objetivo extrair informações desses dados relacionados no tempo. Para isso, modelos são usados para descrever as séries e buscar por padrões. Uma forma de modelar séries temporais é por meio de redes complexas. Nessa modelagem, um mapeamento é feito do espaço temporal para o espaço topológico, o que permite avaliar dados temporais usando técnicas de redes. Nesta tese, apresentamos soluções para tarefas de mineração de dados de séries temporais usando redes complexas. O objetivo principal foi avaliar os benefícios do uso da teoria de redes para extrair informações de dados temporais. Concentramo-nos em três tarefas de mineração. (1) Na tarefa de agrupamento, cada série temporal é representada por um vértice e as arestas são criadas entre as séries de acordo com sua similaridade. Os algoritmos de detecção de comunidades podem ser usados para agrupar séries semelhantes. Os resultados mostram que esta abordagem apresenta melhores resultados do que os resultados de agrupamento tradicional. (2) Na tarefa de classificação, cada série temporal rotulada em um banco de dados é mapeada para um gráfico de visibilidade. A classificação é realizada transformando uma série temporal não marcada em um gráfico de visibilidade e comparando-a com os gráficos rotulados usando uma função de distância. O novo rótulo é dado pelo rótulo mais frequente nos k grafos mais próximos. (3) Na tarefa de detecção de periodicidade, uma série temporal é primeiramente transformada em um gráfico de visibilidade. Máximos locais em uma série temporal geralmente são mapeados para vértices altamente conectados que ligam duas comunidades. O método proposto utiliza a estrutura de comunidades para realizar a detecção de períodos em séries temporais. Este método é robusto para dados ruidosos e não requer parâmetros. Com os métodos e resultados apresentados nesta tese, concluímos que a teoria da redes complexas é benéfica para a mineração de dados em séries temporais. Além disso, esta abordagem pode proporcionar melhores resultados do que os métodos tradicionais e é uma nova forma de extrair informações de séries temporais que pode ser facilmente estendida para outras tarefas.