A security-aware routing approach for networks-on-chip

Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-30T13:50:31Z No. of bitstreams: 1 DIS_RAMON_COSTI_FERNANDES_COMPLETO.pdf: 4552821 bytes, checksum: 31f78eb686d2c3126cf0abf4584de386 (MD5) === Made available in DSpace on 2017-06-30T13:50:31Z (GMT). No. of bitstreams: 1 DIS_RAMON_COST...

Full description

Bibliographic Details
Main Author: Fernandes, Ramon Costi
Other Authors: Marcon, C?sar Augusto Missio
Format: Others
Language:English
Published: Pontif?cia Universidade Cat?lica do Rio Grande do Sul 2017
Subjects:
Online Access:http://tede2.pucrs.br/tede2/handle/tede/7431
id ndltd-IBICT-oai-tede2.pucrs.br-tede-7431
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Networks-on-Chip
NoCs
Intrachip Routing
NoC Security
Redes Intrachip
Roteamento Intrachip
Seguran?a em NoC
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
spellingShingle Networks-on-Chip
NoCs
Intrachip Routing
NoC Security
Redes Intrachip
Roteamento Intrachip
Seguran?a em NoC
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Fernandes, Ramon Costi
A security-aware routing approach for networks-on-chip
description Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-30T13:50:31Z No. of bitstreams: 1 DIS_RAMON_COSTI_FERNANDES_COMPLETO.pdf: 4552821 bytes, checksum: 31f78eb686d2c3126cf0abf4584de386 (MD5) === Made available in DSpace on 2017-06-30T13:50:31Z (GMT). No. of bitstreams: 1 DIS_RAMON_COSTI_FERNANDES_COMPLETO.pdf: 4552821 bytes, checksum: 31f78eb686d2c3126cf0abf4584de386 (MD5) Previous issue date: 2017-03-13 === A pr?xima gera??o de sistemas multiprocessados intra-chip, do ingl?s MultiProcessor Systems-on-Chip (MPSoC), comportar? centenas de elementos de processamento num ?nico chip, com a promessa de alta vaz?o de comunica??o, baixa lat?ncia e, preferencialmente, baixo consumo de energia. Devido ? elevada demanda de comunica??o paralela de aplica??es para MPSoCs, a rede intra-chip, do ingl?s Network-on-Chip (NoC), tem sido amplamente adotada como um meio de comunica??o confi?vel e escal?vel para MPSoCs. O espa?o de projeto para NoCs deve ser explorado para atender ? demanda das aplica??es atuais. Dentre os par?metros que definem uma NoC, o algoritmo de roteamento tem sido utilizado para prover servi?os como toler?ncia ? falhas, liberdade de deadlocks e de livelocks, assim como Quality of Service (QoS). Conforme a ado??o e complexidade de Systems-on-Chip (SoC) aumenta para sistemas embarcados, a preocupa??o com a prote??o de dados tamb?m torna-se um requisito para o projeto de MPSoCs. Atualmente, MPSoCs podem ser atacados explorando vulnerabilidades em hardware ou software, sendo o ?ltimo respons?vel por 80% dos incidentes de seguran?a em sistemas embarcados. A prote??o contra vulnerabilidades de software pode acontecer em: (i) N?vel de Aplica??o, utilizando t?cnicas como a criptografia, para evitar a transmiss?o de dados desprotegidos entre os elementos de um MPSoC, conhecidos como m?dulos de propriedade intelectual, do ingl?s Intellectual Property (IP); ou (ii) N?vel de Comunica??o, inspecionando ou filtrando elementos na arquitetura de interconex?o atrav?s de monitores de comunica??o ou firewalls, respectivamente. Portanto, um algoritmo de roteamento, ciente dos requisitos de seguran?a do sistema, deve oferecer prote??o ao utilizar rotas confi?veis na NoC, evitando elementos potencialmente maliciosos em rotas porventura inseguras. A principal contribui??o deste trabalho ? uma t?cnica de prote??o para NoCs que atua em n?vel de comunica??o, adaptando os algoritmos Segment-based Routing (SBR) e Region-based Routing (RBR) para que estes considerem aspectos de seguran?a do sistema, estes caracterizados por zonas de seguran?a definidas na NoC de acordo com o mapeamento de aplica??es nos IPs. A avalia??o da t?cnica de roteamento considera aspectos como a escalabilidade das tabelas de roteamento, a quantidade de rotas seguras definidas entre os IPs, e o impacto desta t?cnica de roteamento em aplica??es do benchmark NASA Numerical Aerodynamic Simulation (NAS) Parallel Bencharm (NPB). === The next generation of MultiProcessor Systems-on-Chip (MPSoC) will encompass hundreds of integrated processing elements into a single chip, with the promise of highthroughput, low latency and, preferably, low energy utilization. Due to the high communication parallelism required by several applications targeting MPSoC architectures, the Network-on-Chip (NoC) has been widely adopted as a reliable and scalable interconnection mechanism. The NoC design space should be explored to meet the demanding requirements of current applications. Among the parameters that define a NoC configuration, the routing algorithm has been employed to provide services such as fault tolerance, deadlock and livelock freedom, as well as Quality of Service (QoS). As the adoption and complexity of System-on-Chip (SoC) increases for embedded systems, the concern for data protection appears as a new design requirement. Currently, MPSoCs can be attacked by exploiting either hardware or software vulnerabilities, with the later responsible for 80% of the security incidents in embedded systems. Protection against software vulnerabilities can occur at (i) Application Level, by using techniques such as data encryption to avoid plain data transmissions between Intellectual Property (IP) modules; or (ii) Communication Level, inspecting or filtering elements at the interconnect fabric with communication monitors or firewalls, respectively. As such, a routing algorithm aware of security requirements could also offer protection utilizing trusted communication paths in the NoC, avoiding potential malicious elements in otherwise unsafe communication paths. The main contribution of this work is a NoC protection technique at communication level by adapting Segment-based Routing (SBR) and Region-based Routing (RBR) algorithms to consider system security requirements, characterized by security zones which are defined on the NoC according to the mapping of applications on IP modules. Evaluation of the proposed routing technique considers aspects such as the scalability of routing tables, the number of secure communication paths, and the impact of this technique on applications of the NASA Numerical Aerodynamic Simulation (NAS) Parallel Benchmark (NPB).
author2 Marcon, C?sar Augusto Missio
author_facet Marcon, C?sar Augusto Missio
Fernandes, Ramon Costi
author Fernandes, Ramon Costi
author_sort Fernandes, Ramon Costi
title A security-aware routing approach for networks-on-chip
title_short A security-aware routing approach for networks-on-chip
title_full A security-aware routing approach for networks-on-chip
title_fullStr A security-aware routing approach for networks-on-chip
title_full_unstemmed A security-aware routing approach for networks-on-chip
title_sort security-aware routing approach for networks-on-chip
publisher Pontif?cia Universidade Cat?lica do Rio Grande do Sul
publishDate 2017
url http://tede2.pucrs.br/tede2/handle/tede/7431
work_keys_str_mv AT fernandesramoncosti asecurityawareroutingapproachfornetworksonchip
AT fernandesramoncosti umaabordagemderoteamentoseguropararedesintrachip
AT fernandesramoncosti securityawareroutingapproachfornetworksonchip
_version_ 1718955438608744448
spelling ndltd-IBICT-oai-tede2.pucrs.br-tede-74312019-01-22T02:46:59Z A security-aware routing approach for networks-on-chip Uma abordagem de roteamento seguro para redes intrachip Fernandes, Ramon Costi Marcon, C?sar Augusto Missio Sep?lveda, Martha Johanna Networks-on-Chip NoCs Intrachip Routing NoC Security Redes Intrachip Roteamento Intrachip Seguran?a em NoC CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-30T13:50:31Z No. of bitstreams: 1 DIS_RAMON_COSTI_FERNANDES_COMPLETO.pdf: 4552821 bytes, checksum: 31f78eb686d2c3126cf0abf4584de386 (MD5) Made available in DSpace on 2017-06-30T13:50:31Z (GMT). No. of bitstreams: 1 DIS_RAMON_COSTI_FERNANDES_COMPLETO.pdf: 4552821 bytes, checksum: 31f78eb686d2c3126cf0abf4584de386 (MD5) Previous issue date: 2017-03-13 A pr?xima gera??o de sistemas multiprocessados intra-chip, do ingl?s MultiProcessor Systems-on-Chip (MPSoC), comportar? centenas de elementos de processamento num ?nico chip, com a promessa de alta vaz?o de comunica??o, baixa lat?ncia e, preferencialmente, baixo consumo de energia. Devido ? elevada demanda de comunica??o paralela de aplica??es para MPSoCs, a rede intra-chip, do ingl?s Network-on-Chip (NoC), tem sido amplamente adotada como um meio de comunica??o confi?vel e escal?vel para MPSoCs. O espa?o de projeto para NoCs deve ser explorado para atender ? demanda das aplica??es atuais. Dentre os par?metros que definem uma NoC, o algoritmo de roteamento tem sido utilizado para prover servi?os como toler?ncia ? falhas, liberdade de deadlocks e de livelocks, assim como Quality of Service (QoS). Conforme a ado??o e complexidade de Systems-on-Chip (SoC) aumenta para sistemas embarcados, a preocupa??o com a prote??o de dados tamb?m torna-se um requisito para o projeto de MPSoCs. Atualmente, MPSoCs podem ser atacados explorando vulnerabilidades em hardware ou software, sendo o ?ltimo respons?vel por 80% dos incidentes de seguran?a em sistemas embarcados. A prote??o contra vulnerabilidades de software pode acontecer em: (i) N?vel de Aplica??o, utilizando t?cnicas como a criptografia, para evitar a transmiss?o de dados desprotegidos entre os elementos de um MPSoC, conhecidos como m?dulos de propriedade intelectual, do ingl?s Intellectual Property (IP); ou (ii) N?vel de Comunica??o, inspecionando ou filtrando elementos na arquitetura de interconex?o atrav?s de monitores de comunica??o ou firewalls, respectivamente. Portanto, um algoritmo de roteamento, ciente dos requisitos de seguran?a do sistema, deve oferecer prote??o ao utilizar rotas confi?veis na NoC, evitando elementos potencialmente maliciosos em rotas porventura inseguras. A principal contribui??o deste trabalho ? uma t?cnica de prote??o para NoCs que atua em n?vel de comunica??o, adaptando os algoritmos Segment-based Routing (SBR) e Region-based Routing (RBR) para que estes considerem aspectos de seguran?a do sistema, estes caracterizados por zonas de seguran?a definidas na NoC de acordo com o mapeamento de aplica??es nos IPs. A avalia??o da t?cnica de roteamento considera aspectos como a escalabilidade das tabelas de roteamento, a quantidade de rotas seguras definidas entre os IPs, e o impacto desta t?cnica de roteamento em aplica??es do benchmark NASA Numerical Aerodynamic Simulation (NAS) Parallel Bencharm (NPB). The next generation of MultiProcessor Systems-on-Chip (MPSoC) will encompass hundreds of integrated processing elements into a single chip, with the promise of highthroughput, low latency and, preferably, low energy utilization. Due to the high communication parallelism required by several applications targeting MPSoC architectures, the Network-on-Chip (NoC) has been widely adopted as a reliable and scalable interconnection mechanism. The NoC design space should be explored to meet the demanding requirements of current applications. Among the parameters that define a NoC configuration, the routing algorithm has been employed to provide services such as fault tolerance, deadlock and livelock freedom, as well as Quality of Service (QoS). As the adoption and complexity of System-on-Chip (SoC) increases for embedded systems, the concern for data protection appears as a new design requirement. Currently, MPSoCs can be attacked by exploiting either hardware or software vulnerabilities, with the later responsible for 80% of the security incidents in embedded systems. Protection against software vulnerabilities can occur at (i) Application Level, by using techniques such as data encryption to avoid plain data transmissions between Intellectual Property (IP) modules; or (ii) Communication Level, inspecting or filtering elements at the interconnect fabric with communication monitors or firewalls, respectively. As such, a routing algorithm aware of security requirements could also offer protection utilizing trusted communication paths in the NoC, avoiding potential malicious elements in otherwise unsafe communication paths. The main contribution of this work is a NoC protection technique at communication level by adapting Segment-based Routing (SBR) and Region-based Routing (RBR) algorithms to consider system security requirements, characterized by security zones which are defined on the NoC according to the mapping of applications on IP modules. Evaluation of the proposed routing technique considers aspects such as the scalability of routing tables, the number of secure communication paths, and the impact of this technique on applications of the NASA Numerical Aerodynamic Simulation (NAS) Parallel Benchmark (NPB). 2017-06-30T13:50:31Z 2017-03-13 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://tede2.pucrs.br/tede2/handle/tede/7431 eng 1974996533081274470 600 600 600 -3008542510401149144 3671711205811204509 info:eu-repo/semantics/openAccess application/pdf Pontif?cia Universidade Cat?lica do Rio Grande do Sul Programa de P?s-Gradua??o em Ci?ncia da Computa??o PUCRS Brasil Faculdade de Inform?tica reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul instacron:PUC_RS