An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms

Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-05T14:58:52Z No. of bitstreams: 1 TES_RENATA_DE_PARIS_COMPLETO.pdf: 8873897 bytes, checksum: 43b2a883518fc9ce39978e816042ab5f (MD5) === Made available in DSpace on 2017-06-05T14:58:53Z (GMT). No. of bitstreams: 1 TES_RENATA_DE_PARIS_...

Full description

Bibliographic Details
Main Author: De Paris, Renata
Other Authors: Ruiz, Duncan Dubugras Alcoba
Format: Others
Language:English
Published: Pontif?cia Universidade Cat?lica do Rio Grande do Sul 2017
Subjects:
Online Access:http://tede2.pucrs.br/tede2/handle/tede/7329
id ndltd-IBICT-oai-tede2.pucrs.br-tede-7329
record_format oai_dc
collection NDLTD
language English
format Others
sources NDLTD
topic Scientific Workflow
Cloud Computing
Clustering of MD Trajectories
Molecular Docking Simulations
Fully-Flexible Receptor Model
Workflow Cient?fico
Computa??o em Nuvem
Agrupamento de Trajet?rias da Din?mica Molecular
Docagem Molecular
Modelo de Receptor Totalmente Flex?vel
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
spellingShingle Scientific Workflow
Cloud Computing
Clustering of MD Trajectories
Molecular Docking Simulations
Fully-Flexible Receptor Model
Workflow Cient?fico
Computa??o em Nuvem
Agrupamento de Trajet?rias da Din?mica Molecular
Docagem Molecular
Modelo de Receptor Totalmente Flex?vel
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
De Paris, Renata
An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
description Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-05T14:58:52Z No. of bitstreams: 1 TES_RENATA_DE_PARIS_COMPLETO.pdf: 8873897 bytes, checksum: 43b2a883518fc9ce39978e816042ab5f (MD5) === Made available in DSpace on 2017-06-05T14:58:53Z (GMT). No. of bitstreams: 1 TES_RENATA_DE_PARIS_COMPLETO.pdf: 8873897 bytes, checksum: 43b2a883518fc9ce39978e816042ab5f (MD5) Previous issue date: 2016-10-28 === Conselho Nacional de Pesquisa e Desenvolvimento Cient?fico e Tecnol?gico - CNPq === O uso de conforma??es obtidas por trajet?rias da din?mica molecular nos experimentos de docagem molecular ? a abordagem mais precisa para simular o comportamento de receptores e ligantes em ambientes moleculares. Entretanto, tais simula??es exigem alto custo computacional e a sua completa execu??o pode se tornar uma tarefa impratic?vel devido ao vasto n?mero de informa??es estruturais consideradas para representar a expl?cita flexibilidade de receptores. Al?m disso, o problema ? ainda mais desafiante quando deseja-se utilizar modelos de receptores totalmente flex?veis (Fully-Flexible Receptor - FFR) para realizar a triagem virtual em bibliotecas de ligantes. Este estudo apresenta um m?todo inovador para otimizar a triagem virtual baseada em docagem molecular de modelos FFR por meio da redu??o do n?mero de experimentos de docagem e, da invoca??o escalar de workflows de docagem para m?quinas virtuais de plataformas em nuvem. Para esse prop?sito, o workflow cient?fico basedo em nuvem, chamado e-FReDock, foi desenvolvido para acelerar as simula??es da docagem molecular em larga escala. e-FReDock ? baseado em um m?todo seletivo sem param?tros para executar experimentos de docagem ensemble com m?ltiplos ligantes. Como dados de entrada do e-FReDock, aplicou-se seis m?todos de agrupamento para particionar conforma??es com diferentes caracter?sticas estruturais no s?tio de liga??o da cavidade do substrato do receptor, visando identificar grupos de conforma??es favor?veis a interagir com espec?ficos ligantes durante os experimentos de docagem. Os resultados mostram o elevado n?vel de qualidade obtido pelos modelos de receptores totalmente flex?veis reduzidos (Reduced Fully-Flexible Receptor - RFFR) ao final dos experimentos em dois conjuntos de an?lises. O primeiro mostra que e-FReDock ? capaz de preservar a qualidade do modelo FFR entre 84,00% e 94,00%, enquanto a sua dimensionalidade reduz em uma m?dia de 49,68%. O segundo relata que os modelos RFFR resultantes s?o capazes de melhorar os resultados de docagem molecular em 97,00% dos ligantes testados quando comparados com a vers?o r?gida do modelo FFR. === The use of conformations obtained from molecular dynamics trajectories in the molecular docking experiments is the most accurate approach to simulate the behavior of receptors and ligands in molecular environments. However, such simulations are computationally expensive and their execution may become an infeasible task due to the large number of structural information, typically considered to represent the explicit flexibility of receptors. In addition, the computational demand increases when Fully-Flexible Receptor (FFR) models are routinely applied for screening of large compounds libraries. This study presents a novel method to optimize docking-based virtual screening of FFR models by reducing the size of FFR models at docking runtime, and scaling docking workflow invocations out onto virtual machines from cloud platforms. For this purpose, we developed e-FReDock, a cloud-based scientific workflow that assists in faster high-throughput docking simulations of flexible receptors and ligands. e-FReDock is based on a free-parameter selective method to perform ensemble docking experiments with multiple ligands from a clustered FFR model. The e-FReDock input data was generated by applying six clustering methods for partitioning conformations with different features in their substrate-binding cavities, aiming at identifying groups of snapshots with favorable interactions for specific ligands at docking runtime. Experimental results show the high quality Reduced Fully-Flexible Receptor (RFFR) models achieved by e-FReDock in two distinct sets of analyses. The first analysis shows that e-FReDock is able to preserve the quality of the FFR model between 84.00% and 94.00%, while its dimensionality reduces on average 49.68%. The second analysis reports that resulting RFFR models are able to reach better docking results than those obtained from the rigid version of the FFR model in 97.00% of the ligands tested.
author2 Ruiz, Duncan Dubugras Alcoba
author_facet Ruiz, Duncan Dubugras Alcoba
De Paris, Renata
author De Paris, Renata
author_sort De Paris, Renata
title An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
title_short An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
title_full An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
title_fullStr An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
title_full_unstemmed An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
title_sort effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms
publisher Pontif?cia Universidade Cat?lica do Rio Grande do Sul
publishDate 2017
url http://tede2.pucrs.br/tede2/handle/tede/7329
work_keys_str_mv AT deparisrenata aneffectivemethodtooptimizedockingbasedvirtualscreeninginaclusteredfullyflexiblereceptormodeldeployedoncloudplatforms
AT deparisrenata ummtodoefetivoparaotimizaratriagemvirtualbaseadaemdocagemdeummodelodereceptortotalmenteflexvelagrupadoutilizandocomputaesemnuvem
AT deparisrenata effectivemethodtooptimizedockingbasedvirtualscreeninginaclusteredfullyflexiblereceptormodeldeployedoncloudplatforms
_version_ 1718955401131589632
spelling ndltd-IBICT-oai-tede2.pucrs.br-tede-73292019-01-22T02:46:34Z An effective method to optimize docking-based virtual screening in a clustered fully-flexible receptor model deployed on cloud platforms Um m?todo efetivo para otimizar a triagem virtual baseada em docagem de um modelo de receptor totalmente flex?vel agrupado utilizando computa??es em nuvem De Paris, Renata Ruiz, Duncan Dubugras Alcoba Souza, Osmar Norberto de Scientific Workflow Cloud Computing Clustering of MD Trajectories Molecular Docking Simulations Fully-Flexible Receptor Model Workflow Cient?fico Computa??o em Nuvem Agrupamento de Trajet?rias da Din?mica Molecular Docagem Molecular Modelo de Receptor Totalmente Flex?vel CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-06-05T14:58:52Z No. of bitstreams: 1 TES_RENATA_DE_PARIS_COMPLETO.pdf: 8873897 bytes, checksum: 43b2a883518fc9ce39978e816042ab5f (MD5) Made available in DSpace on 2017-06-05T14:58:53Z (GMT). No. of bitstreams: 1 TES_RENATA_DE_PARIS_COMPLETO.pdf: 8873897 bytes, checksum: 43b2a883518fc9ce39978e816042ab5f (MD5) Previous issue date: 2016-10-28 Conselho Nacional de Pesquisa e Desenvolvimento Cient?fico e Tecnol?gico - CNPq O uso de conforma??es obtidas por trajet?rias da din?mica molecular nos experimentos de docagem molecular ? a abordagem mais precisa para simular o comportamento de receptores e ligantes em ambientes moleculares. Entretanto, tais simula??es exigem alto custo computacional e a sua completa execu??o pode se tornar uma tarefa impratic?vel devido ao vasto n?mero de informa??es estruturais consideradas para representar a expl?cita flexibilidade de receptores. Al?m disso, o problema ? ainda mais desafiante quando deseja-se utilizar modelos de receptores totalmente flex?veis (Fully-Flexible Receptor - FFR) para realizar a triagem virtual em bibliotecas de ligantes. Este estudo apresenta um m?todo inovador para otimizar a triagem virtual baseada em docagem molecular de modelos FFR por meio da redu??o do n?mero de experimentos de docagem e, da invoca??o escalar de workflows de docagem para m?quinas virtuais de plataformas em nuvem. Para esse prop?sito, o workflow cient?fico basedo em nuvem, chamado e-FReDock, foi desenvolvido para acelerar as simula??es da docagem molecular em larga escala. e-FReDock ? baseado em um m?todo seletivo sem param?tros para executar experimentos de docagem ensemble com m?ltiplos ligantes. Como dados de entrada do e-FReDock, aplicou-se seis m?todos de agrupamento para particionar conforma??es com diferentes caracter?sticas estruturais no s?tio de liga??o da cavidade do substrato do receptor, visando identificar grupos de conforma??es favor?veis a interagir com espec?ficos ligantes durante os experimentos de docagem. Os resultados mostram o elevado n?vel de qualidade obtido pelos modelos de receptores totalmente flex?veis reduzidos (Reduced Fully-Flexible Receptor - RFFR) ao final dos experimentos em dois conjuntos de an?lises. O primeiro mostra que e-FReDock ? capaz de preservar a qualidade do modelo FFR entre 84,00% e 94,00%, enquanto a sua dimensionalidade reduz em uma m?dia de 49,68%. O segundo relata que os modelos RFFR resultantes s?o capazes de melhorar os resultados de docagem molecular em 97,00% dos ligantes testados quando comparados com a vers?o r?gida do modelo FFR. The use of conformations obtained from molecular dynamics trajectories in the molecular docking experiments is the most accurate approach to simulate the behavior of receptors and ligands in molecular environments. However, such simulations are computationally expensive and their execution may become an infeasible task due to the large number of structural information, typically considered to represent the explicit flexibility of receptors. In addition, the computational demand increases when Fully-Flexible Receptor (FFR) models are routinely applied for screening of large compounds libraries. This study presents a novel method to optimize docking-based virtual screening of FFR models by reducing the size of FFR models at docking runtime, and scaling docking workflow invocations out onto virtual machines from cloud platforms. For this purpose, we developed e-FReDock, a cloud-based scientific workflow that assists in faster high-throughput docking simulations of flexible receptors and ligands. e-FReDock is based on a free-parameter selective method to perform ensemble docking experiments with multiple ligands from a clustered FFR model. The e-FReDock input data was generated by applying six clustering methods for partitioning conformations with different features in their substrate-binding cavities, aiming at identifying groups of snapshots with favorable interactions for specific ligands at docking runtime. Experimental results show the high quality Reduced Fully-Flexible Receptor (RFFR) models achieved by e-FReDock in two distinct sets of analyses. The first analysis shows that e-FReDock is able to preserve the quality of the FFR model between 84.00% and 94.00%, while its dimensionality reduces on average 49.68%. The second analysis reports that resulting RFFR models are able to reach better docking results than those obtained from the rigid version of the FFR model in 97.00% of the ligands tested. 2017-06-05T14:58:53Z 2016-10-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis http://tede2.pucrs.br/tede2/handle/tede/7329 eng 1974996533081274470 600 600 600 600 -3008542510401149144 3671711205811204509 -2555911436985713659 info:eu-repo/semantics/openAccess application/pdf Pontif?cia Universidade Cat?lica do Rio Grande do Sul Programa de P?s-Gradua??o em Ci?ncia da Computa??o PUCRS Brasil Faculdade de Inform?tica reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul instacron:PUC_RS