A unified mapreduce programming interface for multi-core and distributed architectures

Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) === Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams...

Full description

Bibliographic Details
Main Author: Adornes, Daniel Couto
Other Authors: Fernandes, Luiz Gustavo Le?o
Format: Others
Language:English
Published: Pontif?cia Universidade Cat?lica do Rio Grande do Sul 2016
Subjects:
Online Access:http://tede2.pucrs.br/tede2/handle/tede/6782
id ndltd-IBICT-oai-tede2.pucrs.br-tede-6782
record_format oai_dc
spelling ndltd-IBICT-oai-tede2.pucrs.br-tede-67822019-01-22T02:44:17Z A unified mapreduce programming interface for multi-core and distributed architectures Uma interface de programa??o mapreduce unificada para arquiteturas multi-core e distribu?da Adornes, Daniel Couto Fernandes, Luiz Gustavo Le?o MEM?RIA COMPARTILHADA DISTRIBU?DA PROCESSAMENTO PARALELO PROCESSAMENTO DISTRIBU?DO INFORM?TICA CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) Previous issue date: 2015-03-31 Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES In order to improve performance, simplicity and scalability of large datasets processing, Google proposed the MapReduce parallel pattern. This pattern has been implemented in several ways for different architectural levels, achieving significant results for high performance computing. However, developing optimized code with those solutions requires specialized knowledge in each framework?s interface and programming language. Recently, the DSL-POPP was proposed as a framework with a high-level language for patternsoriented parallel programming, aimed at abstracting complexities of parallel and distributed code. Inspired on DSL-POPP, this work proposes the implementation of a unified MapReduce programming interface with rules for code transformation to optimized solutions for shared-memory multi-core and distributed architectures. The evaluation demonstrates that the proposed interface is able to avoid performance losses, while also achieving a code and a development cost reduction from 41.84% to 96.48%. Moreover, the construction of the code generator, the compatibility with other MapReduce solutions and the extension of DSL-POPP with the MapReduce pattern are proposed as future work. Visando melhoria de performance, simplicidade e escalabilidade no processamento de dados amplos, o Google prop?s o padr?o paralelo MapReduce. Este padr?o tem sido implementado de variadas formas para diferentes n?veis de arquitetura, alcan?ando resultados significativos com respeito a computa??o de alto desempenho. No entanto, desenvolver c?digo otimizado com tais solu??es requer conhecimento especializado na interface e na linguagem de programa??o de cada solu??o. Recentemente, a DSL-POPP foi proposta como uma solu??o de linguagem de programa??o de alto n?vel para programa??o paralela orientada a padr?es, visando abstrair as complexidades envolvidas em programa??o paralela e distribu?da. Inspirado na DSL-POPP, este trabalho prop?e a implementa??o de uma interface unificada de programa??o MapReduce com regras para transforma??o de c?digo para solu??es otimizadas para arquiteturas multi-core de mem?ria compartilhada e distribu?da. A avalia??o demonstra que a interface proposta ? capaz de evitar perdas de performance, enquanto alcan?a uma redu??o de c?digo e esfor?o de programa??o de 41,84% a 96,48%. Ademais, a constru??o do gerador de c?digo, a compatibilidade com outras solu??es MapReduce e a extens?o da DSL-POPP com o padr?o MapReduce s?o propostas para trabalhos futuros. 2016-06-22T19:44:58Z 2015-03-31 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://tede2.pucrs.br/tede2/handle/tede/6782 eng 1974996533081274470 600 600 600 600 -3008542510401149144 3671711205811204509 2075167498588264571 info:eu-repo/semantics/openAccess application/pdf Pontif?cia Universidade Cat?lica do Rio Grande do Sul Programa de P?s-Gradua??o em Ci?ncia da Computa??o PUCRS Brasil Faculdade de Inform?tica reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul instacron:PUC_RS
collection NDLTD
language English
format Others
sources NDLTD
topic MEM?RIA COMPARTILHADA DISTRIBU?DA
PROCESSAMENTO PARALELO
PROCESSAMENTO DISTRIBU?DO
INFORM?TICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
spellingShingle MEM?RIA COMPARTILHADA DISTRIBU?DA
PROCESSAMENTO PARALELO
PROCESSAMENTO DISTRIBU?DO
INFORM?TICA
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Adornes, Daniel Couto
A unified mapreduce programming interface for multi-core and distributed architectures
description Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) === Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) Previous issue date: 2015-03-31 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES === In order to improve performance, simplicity and scalability of large datasets processing, Google proposed the MapReduce parallel pattern. This pattern has been implemented in several ways for different architectural levels, achieving significant results for high performance computing. However, developing optimized code with those solutions requires specialized knowledge in each framework?s interface and programming language. Recently, the DSL-POPP was proposed as a framework with a high-level language for patternsoriented parallel programming, aimed at abstracting complexities of parallel and distributed code. Inspired on DSL-POPP, this work proposes the implementation of a unified MapReduce programming interface with rules for code transformation to optimized solutions for shared-memory multi-core and distributed architectures. The evaluation demonstrates that the proposed interface is able to avoid performance losses, while also achieving a code and a development cost reduction from 41.84% to 96.48%. Moreover, the construction of the code generator, the compatibility with other MapReduce solutions and the extension of DSL-POPP with the MapReduce pattern are proposed as future work. === Visando melhoria de performance, simplicidade e escalabilidade no processamento de dados amplos, o Google prop?s o padr?o paralelo MapReduce. Este padr?o tem sido implementado de variadas formas para diferentes n?veis de arquitetura, alcan?ando resultados significativos com respeito a computa??o de alto desempenho. No entanto, desenvolver c?digo otimizado com tais solu??es requer conhecimento especializado na interface e na linguagem de programa??o de cada solu??o. Recentemente, a DSL-POPP foi proposta como uma solu??o de linguagem de programa??o de alto n?vel para programa??o paralela orientada a padr?es, visando abstrair as complexidades envolvidas em programa??o paralela e distribu?da. Inspirado na DSL-POPP, este trabalho prop?e a implementa??o de uma interface unificada de programa??o MapReduce com regras para transforma??o de c?digo para solu??es otimizadas para arquiteturas multi-core de mem?ria compartilhada e distribu?da. A avalia??o demonstra que a interface proposta ? capaz de evitar perdas de performance, enquanto alcan?a uma redu??o de c?digo e esfor?o de programa??o de 41,84% a 96,48%. Ademais, a constru??o do gerador de c?digo, a compatibilidade com outras solu??es MapReduce e a extens?o da DSL-POPP com o padr?o MapReduce s?o propostas para trabalhos futuros.
author2 Fernandes, Luiz Gustavo Le?o
author_facet Fernandes, Luiz Gustavo Le?o
Adornes, Daniel Couto
author Adornes, Daniel Couto
author_sort Adornes, Daniel Couto
title A unified mapreduce programming interface for multi-core and distributed architectures
title_short A unified mapreduce programming interface for multi-core and distributed architectures
title_full A unified mapreduce programming interface for multi-core and distributed architectures
title_fullStr A unified mapreduce programming interface for multi-core and distributed architectures
title_full_unstemmed A unified mapreduce programming interface for multi-core and distributed architectures
title_sort unified mapreduce programming interface for multi-core and distributed architectures
publisher Pontif?cia Universidade Cat?lica do Rio Grande do Sul
publishDate 2016
url http://tede2.pucrs.br/tede2/handle/tede/6782
work_keys_str_mv AT adornesdanielcouto aunifiedmapreduceprogramminginterfaceformulticoreanddistributedarchitectures
AT adornesdanielcouto umainterfacedeprogramaomapreduceunificadaparaarquiteturasmulticoreedistribuda
AT adornesdanielcouto unifiedmapreduceprogramminginterfaceformulticoreanddistributedarchitectures
_version_ 1718954954896441344