A unified mapreduce programming interface for multi-core and distributed architectures
Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) === Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
Pontif?cia Universidade Cat?lica do Rio Grande do Sul
2016
|
Subjects: | |
Online Access: | http://tede2.pucrs.br/tede2/handle/tede/6782 |
id |
ndltd-IBICT-oai-tede2.pucrs.br-tede-6782 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IBICT-oai-tede2.pucrs.br-tede-67822019-01-22T02:44:17Z A unified mapreduce programming interface for multi-core and distributed architectures Uma interface de programa??o mapreduce unificada para arquiteturas multi-core e distribu?da Adornes, Daniel Couto Fernandes, Luiz Gustavo Le?o MEM?RIA COMPARTILHADA DISTRIBU?DA PROCESSAMENTO PARALELO PROCESSAMENTO DISTRIBU?DO INFORM?TICA CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams: 1 DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) Previous issue date: 2015-03-31 Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES In order to improve performance, simplicity and scalability of large datasets processing, Google proposed the MapReduce parallel pattern. This pattern has been implemented in several ways for different architectural levels, achieving significant results for high performance computing. However, developing optimized code with those solutions requires specialized knowledge in each framework?s interface and programming language. Recently, the DSL-POPP was proposed as a framework with a high-level language for patternsoriented parallel programming, aimed at abstracting complexities of parallel and distributed code. Inspired on DSL-POPP, this work proposes the implementation of a unified MapReduce programming interface with rules for code transformation to optimized solutions for shared-memory multi-core and distributed architectures. The evaluation demonstrates that the proposed interface is able to avoid performance losses, while also achieving a code and a development cost reduction from 41.84% to 96.48%. Moreover, the construction of the code generator, the compatibility with other MapReduce solutions and the extension of DSL-POPP with the MapReduce pattern are proposed as future work. Visando melhoria de performance, simplicidade e escalabilidade no processamento de dados amplos, o Google prop?s o padr?o paralelo MapReduce. Este padr?o tem sido implementado de variadas formas para diferentes n?veis de arquitetura, alcan?ando resultados significativos com respeito a computa??o de alto desempenho. No entanto, desenvolver c?digo otimizado com tais solu??es requer conhecimento especializado na interface e na linguagem de programa??o de cada solu??o. Recentemente, a DSL-POPP foi proposta como uma solu??o de linguagem de programa??o de alto n?vel para programa??o paralela orientada a padr?es, visando abstrair as complexidades envolvidas em programa??o paralela e distribu?da. Inspirado na DSL-POPP, este trabalho prop?e a implementa??o de uma interface unificada de programa??o MapReduce com regras para transforma??o de c?digo para solu??es otimizadas para arquiteturas multi-core de mem?ria compartilhada e distribu?da. A avalia??o demonstra que a interface proposta ? capaz de evitar perdas de performance, enquanto alcan?a uma redu??o de c?digo e esfor?o de programa??o de 41,84% a 96,48%. Ademais, a constru??o do gerador de c?digo, a compatibilidade com outras solu??es MapReduce e a extens?o da DSL-POPP com o padr?o MapReduce s?o propostas para trabalhos futuros. 2016-06-22T19:44:58Z 2015-03-31 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis http://tede2.pucrs.br/tede2/handle/tede/6782 eng 1974996533081274470 600 600 600 600 -3008542510401149144 3671711205811204509 2075167498588264571 info:eu-repo/semantics/openAccess application/pdf Pontif?cia Universidade Cat?lica do Rio Grande do Sul Programa de P?s-Gradua??o em Ci?ncia da Computa??o PUCRS Brasil Faculdade de Inform?tica reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS instname:Pontifícia Universidade Católica do Rio Grande do Sul instacron:PUC_RS |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
MEM?RIA COMPARTILHADA DISTRIBU?DA PROCESSAMENTO PARALELO PROCESSAMENTO DISTRIBU?DO INFORM?TICA CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
spellingShingle |
MEM?RIA COMPARTILHADA DISTRIBU?DA PROCESSAMENTO PARALELO PROCESSAMENTO DISTRIBU?DO INFORM?TICA CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Adornes, Daniel Couto A unified mapreduce programming interface for multi-core and distributed architectures |
description |
Submitted by Setor de Tratamento da Informa??o - BC/PUCRS (tede2@pucrs.br) on 2016-06-22T19:44:58Z
No. of bitstreams: 1
DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5) === Made available in DSpace on 2016-06-22T19:44:58Z (GMT). No. of bitstreams: 1
DIS_DANIEL_COUTO_ADORNES_COMPLETO.pdf: 1894086 bytes, checksum: f87c59fa92f43ed62efaafd9c724ed8d (MD5)
Previous issue date: 2015-03-31 === Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES === In order to improve performance, simplicity and scalability of large datasets processing,
Google proposed the MapReduce parallel pattern. This pattern has been implemented
in several ways for different architectural levels, achieving significant results for high performance computing. However, developing optimized code with those solutions requires specialized knowledge in each framework?s interface and programming language. Recently, the DSL-POPP was proposed as a framework with a high-level language for patternsoriented parallel programming, aimed at abstracting complexities of parallel and distributed code. Inspired on DSL-POPP, this work proposes the implementation of a unified MapReduce programming interface with rules for code transformation to optimized solutions for shared-memory multi-core and distributed architectures. The evaluation demonstrates that the proposed interface is able to avoid performance losses, while also achieving a code and a development cost reduction from 41.84% to 96.48%. Moreover, the construction of the code generator, the compatibility with other MapReduce solutions and the extension of DSL-POPP with the MapReduce pattern are proposed as future work. === Visando melhoria de performance, simplicidade e escalabilidade no processamento de dados amplos, o Google prop?s o padr?o paralelo MapReduce. Este padr?o tem sido implementado de variadas formas para diferentes n?veis de arquitetura, alcan?ando resultados significativos com respeito a computa??o de alto desempenho. No entanto, desenvolver c?digo otimizado com tais solu??es requer conhecimento especializado na interface e na linguagem de programa??o de cada solu??o. Recentemente, a DSL-POPP foi proposta como uma solu??o de linguagem de programa??o de alto n?vel para programa??o paralela
orientada a padr?es, visando abstrair as complexidades envolvidas em programa??o paralela e distribu?da. Inspirado na DSL-POPP, este trabalho prop?e a implementa??o de uma interface unificada de programa??o MapReduce com regras para transforma??o de c?digo para solu??es otimizadas para arquiteturas multi-core de mem?ria compartilhada e distribu?da. A avalia??o demonstra que a interface proposta ? capaz de evitar perdas de performance, enquanto alcan?a uma redu??o de c?digo e esfor?o de programa??o de
41,84% a 96,48%. Ademais, a constru??o do gerador de c?digo, a compatibilidade com outras solu??es MapReduce e a extens?o da DSL-POPP com o padr?o MapReduce s?o propostas para trabalhos futuros. |
author2 |
Fernandes, Luiz Gustavo Le?o |
author_facet |
Fernandes, Luiz Gustavo Le?o Adornes, Daniel Couto |
author |
Adornes, Daniel Couto |
author_sort |
Adornes, Daniel Couto |
title |
A unified mapreduce programming interface for multi-core and distributed architectures |
title_short |
A unified mapreduce programming interface for multi-core and distributed architectures |
title_full |
A unified mapreduce programming interface for multi-core and distributed architectures |
title_fullStr |
A unified mapreduce programming interface for multi-core and distributed architectures |
title_full_unstemmed |
A unified mapreduce programming interface for multi-core and distributed architectures |
title_sort |
unified mapreduce programming interface for multi-core and distributed architectures |
publisher |
Pontif?cia Universidade Cat?lica do Rio Grande do Sul |
publishDate |
2016 |
url |
http://tede2.pucrs.br/tede2/handle/tede/6782 |
work_keys_str_mv |
AT adornesdanielcouto aunifiedmapreduceprogramminginterfaceformulticoreanddistributedarchitectures AT adornesdanielcouto umainterfacedeprogramaomapreduceunificadaparaarquiteturasmulticoreedistribuda AT adornesdanielcouto unifiedmapreduceprogramminginterfaceformulticoreanddistributedarchitectures |
_version_ |
1718954954896441344 |