Sensoriamento de espectro e classifica??o de sinais em r?dio cognitivo por decomposi??o em subespa?os e redes neurais RBF

Made available in DSpace on 2015-04-14T13:56:33Z (GMT). No. of bitstreams: 1 464756.pdf: 6294522 bytes, checksum: b41f6ce956ed25415a71e4211c6a3fad (MD5) Previous issue date: 2014-11-18 === The possibility of spectrum shortage and saturation, combined with the increasing demands for higher transmis...

Full description

Bibliographic Details
Main Author: Centeno, Ludimila La Rosa
Other Authors: Castro, Fernando C?sar Comparsi de
Format: Others
Language:Portuguese
Published: Pontif?cia Universidade Cat?lica do Rio Grande do Sul 2015
Subjects:
Online Access:http://tede2.pucrs.br/tede2/handle/tede/3073
Description
Summary:Made available in DSpace on 2015-04-14T13:56:33Z (GMT). No. of bitstreams: 1 464756.pdf: 6294522 bytes, checksum: b41f6ce956ed25415a71e4211c6a3fad (MD5) Previous issue date: 2014-11-18 === The possibility of spectrum shortage and saturation, combined with the increasing demands for higher transmission rates are driving factors for research within cognitive radio networks. Spectrum sensing is one of the major challenges for the commercial development of cognitive radio systems, since the verification of a primary user presence is a complex task that requires high reliability. The proposal of this work is to develop a signal classifier capable of verifying the primary user presence on a particular channel of the radio spectrum. The proposed classifier performs subspace decomposition of the signal covariance matrix, in order to obtain characteristics that may indicate the presence of a primary user. The subspace decomposition enables the design of filter banks to which new signals are submitted. RBF neural networks are used to analyze the filtered signal characteristics and to decide about the presence of a particular type of primary user. Based on IEEE 802.22 regulations, the classification process is performed at the cognitive radio base station, which is responsible for controlling all users and channels in its coverage area. The results indicate that the computational cost of subspace decomposition, which is cyclically performed in similar methods, can be reduced through the proposed approach without jeopardizing the detection quality. === A possibilidade de escassez e satura??o do espectro, aliadas ?s demandas crescentes por maiores capacidades de transmiss?o, s?o fatores que impulsionam a pesquisa de solu??es no ?mbito das redes de r?dios cognitivos. O sensoriamento do espectro constitui um dos maiores desafios para o desenvolvimento comercial dos sistemas de r?dio cognitivo, pois a verifica??o da presen?a de um usu?rio prim?rio ? uma tarefa complexa que exige alta confiabilidade. A proposta deste trabalho ? elaborar um classificador de sinais capaz de verificar a presen?a de um usu?rio prim?rio num determinado canal do espectro de r?dio. O classificador proposto realiza a decomposi??o em subespa?os da matriz de covari?ncia do sinal, visando extra??o de caracter?sticas que possam indicar a presen?a de usu?rio prim?rio. A decomposi??o do sinal em subespa?os permite a determina??o de bancos de filtros aos quais novos sinais s?o submetidos. Redes neurais do tipo RBF s?o utilizadas para an?lise de caracter?sticas dos sinais filtrados e decis?o sobre a presen?a de um determinado tipo de usu?rio prim?rio. Com base na regulamenta??o IEEE 802.22, o processo de classifica??o ? executado na r?dio-base cognitiva, respons?vel pelo controle de todos os usu?rios e canais na sua ?rea de cobertura. Os resultados indicam que o custo computacional da decomposi??o em subespa?os, que ? executada de forma c?clica em m?todos similares, pode ser reduzido atrav?s da abordagem proposta, sem comprometimento da qualidade da detec??o.