Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena
Submitted by (ana.araujo@ufrpe.br) on 2016-08-02T14:44:31Z No. of bitstreams: 1 Leonardo Mendes de Lima Junior.pdf: 503116 bytes, checksum: b90ee3eab94955ade9a3cdf620bfdf26 (MD5) === Made available in DSpace on 2016-08-02T14:44:31Z (GMT). No. of bitstreams: 1 Leonardo Mendes de Lima Junior.pdf:...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal Rural de Pernambuco
2016
|
Subjects: | |
Online Access: | http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5155 |
id |
ndltd-IBICT-oai-tede2-tede2-5155 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Leucena Leucaena leucocephala Crescimento Análise multivariada Análise fatorial Análise de agrupamento Multivariate analysis Factor analysis Cluster analysis CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA |
spellingShingle |
Leucena Leucaena leucocephala Crescimento Análise multivariada Análise fatorial Análise de agrupamento Multivariate analysis Factor analysis Cluster analysis CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA LIMA JÚNIOR, Leonardo Mendes de Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
description |
Submitted by (ana.araujo@ufrpe.br) on 2016-08-02T14:44:31Z
No. of bitstreams: 1
Leonardo Mendes de Lima Junior.pdf: 503116 bytes, checksum: b90ee3eab94955ade9a3cdf620bfdf26 (MD5) === Made available in DSpace on 2016-08-02T14:44:31Z (GMT). No. of bitstreams: 1
Leonardo Mendes de Lima Junior.pdf: 503116 bytes, checksum: b90ee3eab94955ade9a3cdf620bfdf26 (MD5)
Previous issue date: 2006-05-30 === The aim of this work was to identify the growth phases of leucena (Leucaena leucocephala (Lam.) of Wit.), as a function of time, by using of the multivariate analysis techniques. The data set was obtained through an experiment performed at the Experimental Station of Caruaru-PE of the Institute of Agricultural Research - IPA. Besides 20 actual measures of height along time, additional 17 values were used, obtained by interpolation of best fit curves to the Weibull Model, as well as by linear type interpolation, for two distinct treatments groups: according to presence or absence of organic compound residue. The factor analysis was used to reduce the dimensionality of measured data to three factors with eigenvalues higher than unity, explaining 94.60% and 94.30% of the total variation for the treatments with and without organic compound, respectively, using the varimax rotation. The resulting factor scores were subjected to k-means cluster analysis, using previously selected, number of groups k from 3 to 10. The discriminant analysis was then employed to verify the efficiency of clustering of the best classification groups, which was found to be 95.2% and 95.1% of correct classification for the two treatments. The study it showed that the leucena trees which has received with treatment with organic on average attained greater height. The graphical analysis allowed the comparison among the data treatment with and without organic compound treatment, according to groups, in growth phase. === O objetivo deste trabalho foi identificar as fases de crescimento da leucena (Leucaena leucocephala (Lam.) de Wit.), ao longo do tempo, por meio da utilização das técnicas multivariadas. Os dados foram obtidos de um experimento, localizado na Estação Experimental de Caruaru-PE, que pertence à Empresa Pernambucana de Pesquisa Agropecuária – IPA. Nesse estudo, consideraram-se além das 20 medições em altura (em m) ao longo do tempo, outras mais 17 medições, interpoladas através do Modelo de Weibull e também por interpolação do tipo linear, dividido em 2 grupos distintos de tratamentos: segundo a presença ou não de composto de resíduo orgânico. A análise fatorial permitiu a redução da dimensionalidade das medições, em função de 3 fatores, com autovalores superiores a uma unidade e percentual do total da variação explicada de 94,60% e 94,30%, nos tratamentos sem e com composto orgânico, respectivamente, usando a rotação varimax. Dos fatores retidos, foram obtidos os escores e submetidos à análise de agrupamento do tipo k-médias, sendo o número de grupos escolhidos previamente, para de k de 3 a 10. Os grupos de melhor classificação foram verificados na análise discriminante, que avaliou a eficiência destes agrupamentos, em 95,2% e 95,1% de percentual de classificação correta. O estudo mostrou que as plantas que receberam o composto orgânico tiveram as maiores alturas, em média. A análise gráfica permitiu a comparação entre os dados que tiveram tratamento com composto orgânico e sem composto orgânico, conforme os grupos, em sua fase de crescimento. |
author2 |
FERREIRA, Rinaldo Luiz Caraciolo |
author_facet |
FERREIRA, Rinaldo Luiz Caraciolo LIMA JÚNIOR, Leonardo Mendes de |
author |
LIMA JÚNIOR, Leonardo Mendes de |
author_sort |
LIMA JÚNIOR, Leonardo Mendes de |
title |
Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
title_short |
Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
title_full |
Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
title_fullStr |
Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
title_full_unstemmed |
Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
title_sort |
utilização de técnicas multivariadas na classificação de fases de crescimento da leucena |
publisher |
Universidade Federal Rural de Pernambuco |
publishDate |
2016 |
url |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5155 |
work_keys_str_mv |
AT limajuniorleonardomendesde utilizacaodetecnicasmultivariadasnaclassificacaodefasesdecrescimentodaleucena AT limajuniorleonardomendesde theuseofmultivariateanalysisonclassificationinleucenaleucaenaleucocephalalamdewitgrowthfases |
_version_ |
1718855095105355776 |
spelling |
ndltd-IBICT-oai-tede2-tede2-51552019-01-21T18:43:26Z Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena The use of multivariate analysis on classification in leucena (Leucaena leucocephala (Lam.) de Wit.) growth fases LIMA JÚNIOR, Leonardo Mendes de FERREIRA, Rinaldo Luiz Caraciolo SILVA, José Antônio Aleixo da STOSIC, Borko LIRA JÚNIOR, Mário de Andrade Leucena Leucaena leucocephala Crescimento Análise multivariada Análise fatorial Análise de agrupamento Multivariate analysis Factor analysis Cluster analysis CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA Submitted by (ana.araujo@ufrpe.br) on 2016-08-02T14:44:31Z No. of bitstreams: 1 Leonardo Mendes de Lima Junior.pdf: 503116 bytes, checksum: b90ee3eab94955ade9a3cdf620bfdf26 (MD5) Made available in DSpace on 2016-08-02T14:44:31Z (GMT). No. of bitstreams: 1 Leonardo Mendes de Lima Junior.pdf: 503116 bytes, checksum: b90ee3eab94955ade9a3cdf620bfdf26 (MD5) Previous issue date: 2006-05-30 The aim of this work was to identify the growth phases of leucena (Leucaena leucocephala (Lam.) of Wit.), as a function of time, by using of the multivariate analysis techniques. The data set was obtained through an experiment performed at the Experimental Station of Caruaru-PE of the Institute of Agricultural Research - IPA. Besides 20 actual measures of height along time, additional 17 values were used, obtained by interpolation of best fit curves to the Weibull Model, as well as by linear type interpolation, for two distinct treatments groups: according to presence or absence of organic compound residue. The factor analysis was used to reduce the dimensionality of measured data to three factors with eigenvalues higher than unity, explaining 94.60% and 94.30% of the total variation for the treatments with and without organic compound, respectively, using the varimax rotation. The resulting factor scores were subjected to k-means cluster analysis, using previously selected, number of groups k from 3 to 10. The discriminant analysis was then employed to verify the efficiency of clustering of the best classification groups, which was found to be 95.2% and 95.1% of correct classification for the two treatments. The study it showed that the leucena trees which has received with treatment with organic on average attained greater height. The graphical analysis allowed the comparison among the data treatment with and without organic compound treatment, according to groups, in growth phase. O objetivo deste trabalho foi identificar as fases de crescimento da leucena (Leucaena leucocephala (Lam.) de Wit.), ao longo do tempo, por meio da utilização das técnicas multivariadas. Os dados foram obtidos de um experimento, localizado na Estação Experimental de Caruaru-PE, que pertence à Empresa Pernambucana de Pesquisa Agropecuária – IPA. Nesse estudo, consideraram-se além das 20 medições em altura (em m) ao longo do tempo, outras mais 17 medições, interpoladas através do Modelo de Weibull e também por interpolação do tipo linear, dividido em 2 grupos distintos de tratamentos: segundo a presença ou não de composto de resíduo orgânico. A análise fatorial permitiu a redução da dimensionalidade das medições, em função de 3 fatores, com autovalores superiores a uma unidade e percentual do total da variação explicada de 94,60% e 94,30%, nos tratamentos sem e com composto orgânico, respectivamente, usando a rotação varimax. Dos fatores retidos, foram obtidos os escores e submetidos à análise de agrupamento do tipo k-médias, sendo o número de grupos escolhidos previamente, para de k de 3 a 10. Os grupos de melhor classificação foram verificados na análise discriminante, que avaliou a eficiência destes agrupamentos, em 95,2% e 95,1% de percentual de classificação correta. O estudo mostrou que as plantas que receberam o composto orgânico tiveram as maiores alturas, em média. A análise gráfica permitiu a comparação entre os dados que tiveram tratamento com composto orgânico e sem composto orgânico, conforme os grupos, em sua fase de crescimento. 2016-08-02T14:44:31Z 2006-05-30 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis LIMA JÚNIOR, Leonardo Mendes de. Utilização de técnicas multivariadas na classificação de fases de crescimento da leucena. 2006. 79 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife. http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/5155 por 768382242446187918 600 600 600 -6774555140396120501 -5836407828185143517 info:eu-repo/semantics/openAccess application/pdf Universidade Federal Rural de Pernambuco Programa de Pós-Graduação em Biometria e Estatística Aplicada UFRPE Brasil Departamento de Estatística e Informática reponame:Biblioteca Digital de Teses e Dissertações da UFRPE instname:Universidade Federal Rural de Pernambuco instacron:UFRPE |