ANÁLISE TEMPORAL DE NÓDULOS E MASSAS PULMONARES UTILIZANDO ÍNDICES DE SIMILARIDADE

Made available in DSpace on 2016-08-17T14:53:26Z (GMT). No. of bitstreams: 1 dissertacao Pedro Henique.pdf: 3622658 bytes, checksum: 95066b31ffa29d90dfade445121817be (MD5) Previous issue date: 2014-01-03 === With the advent of imaging methods, the pulmonary nodule is becoming the most common man...

Full description

Bibliographic Details
Main Author: Diniz, Pedro Henrique Bandeira
Other Authors: Silva, Aristófanes Corrêa
Format: Others
Language:Portuguese
Published: Universidade Federal do Maranhão 2016
Subjects:
Online Access:http://tedebc.ufma.br:8080/jspui/handle/tede/508
Description
Summary:Made available in DSpace on 2016-08-17T14:53:26Z (GMT). No. of bitstreams: 1 dissertacao Pedro Henique.pdf: 3622658 bytes, checksum: 95066b31ffa29d90dfade445121817be (MD5) Previous issue date: 2014-01-03 === With the advent of imaging methods, the pulmonary nodule is becoming the most common manifestation of lung cancer and one of the most lethal of all cancers. Geometry (shape) and texture (tissue) measurements analyzed over time can be used to search the nodule malignancy. Among geometric measures commonly used, the nodule growth rate is one of the most accurate noninvasive methods to evaluate malignancy. Followed by other texture measures achieved over time, it is possible to get valuable information about nodules behavior, so that the doctor can use them to take related decisions. For these reasons, it is important to compare the nodule in exams applied at different moments. A key step for the comparison is to verify the correspondence between nodules of different exams. This correspondence is used to determine if a nodule X in the exam A is the same nodule Y in an exam B. Due to a number of anatomical and physiological factors and image acquisition, the same nodule cannot be in exactly the same location on different exams. To correct this problem, rigid and deformable image registration show up to be efficient. Once established this correspondence, it is possible to analyze the nodule texture changes through similarity indexes. In this sense, the aim of this work is to present methods for quantitative analysis of texture changes in lung nodules. For this analysis, it is used CT scans obtained at different moments from the same patient. Furthermore, it is presented a method to verify nodules found in different exams correspond to the same nodule by applying image registration. === Com o advento dos métodos de imagem, o nódulo pulmonar vem se tornando a manifestação mais comum de câncer de pulmão e um dos mais letais de todos os cânceres. Uma forma de pesquisar a malignidade de um nódulo é analisar temporalmente suas medidas de geometria (forma) e textura (tecido). Entre medidas geométricas comumente utilizadas, a taxa de crescimento do nódulo constitui um dos métodos mais precisos não invasivos de aferição da malignidade. Acompanhada a outras medidas de textura obtidas no decorrer do tempo, obtém-se informações valiosas sobre o seu comportamento, de forma que o médico pode usar essas medidas na tomada de decisões. Sabendo disso, é importante a comparação do nódulo em exames extraídos em momentos diferentes. Uma etapa fundamental para essa comparação é verificar a correspondência entre nódulos em exames diferentes, de forma que seja possível determinar se um nódulo X em um exame A é o mesmo nódulo Y em um exame B. Devido a uma série de fatores anátomo-fisiológicos e de aquisição de imagens, um mesmo nódulo pode não estar exatamente na mesma localização em exames diferentes. Para corrigir esse problema, registros de imagem rígidos e deformáveis mostram-se eficientes. Uma vez estabelecida essa correspondência, é possível analisar as mudanças na textura do nódulo através de índices de similaridade. Nesse sentido, o objetivo desse trabalho é apresentar métodos para a análise quantitativa de mudanças de textura em nódulos. Para essa análise serão utilizadas imagens de tomografia computadorizada obtidas em momentos diferentes de um mesmo paciente. Além disso, será apresentado um método para verificar se nódulos encontrados em exames diferentes correspondem ao mesmo nódulo através da aplicação de registros de imagens.