PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS
Made available in DSpace on 2016-08-17T14:53:25Z (GMT). No. of bitstreams: 1 Dissertacao Adriano.pdf: 2821465 bytes, checksum: 7a776e55ceec26edfda184c6290c99ee (MD5) Previous issue date: 2013-12-11 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The prediction is an action fo...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal do Maranhão
2016
|
Subjects: | |
Online Access: | http://tedebc.ufma.br:8080/jspui/handle/tede/507 |
id |
ndltd-IBICT-oai-tede2-tede-507 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Predição Biodiesel Redes Neurais Artificiais Sys-PANN Prediction Biodiesel Artificial Neural Networks Sys-PANN CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
spellingShingle |
Predição Biodiesel Redes Neurais Artificiais Sys-PANN Prediction Biodiesel Artificial Neural Networks Sys-PANN CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Rêgo, Adriano dos Santos PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS |
description |
Made available in DSpace on 2016-08-17T14:53:25Z (GMT). No. of bitstreams: 1
Dissertacao Adriano.pdf: 2821465 bytes, checksum: 7a776e55ceec26edfda184c6290c99ee (MD5)
Previous issue date: 2013-12-11 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The prediction is an action for decisions making. The smaller the error of the prediction, the lower the loss by decision taken. One technique that has been used very successfully to predict is the Artificial Neural Network (ANN). It is a computational tool, inspired by the human brain and has a great ability to model complex real-world problems through a phase called training enables it to learn the characteristics of the proposed problem. The ANNs have the potential to discover complex relations between input data and response so they become very useful in the prediction area. For optimal performance in various areas of knowledge, it was decided to assess its efficiency in a sector, the Biodiesel. It is a renewable fuel generated from oils of animal or vegetable to be used in diesel engines. It has several benefits over mineral diesel and at the time, their production and use gets great stimuli federal government, through the National Program for Production and Use of Biodiesel. Thus, interest in research grew and Biodiesel in the state of Maranhão is performed by the Laboratory of Chemical Research & Analytics (LPQA / UFMA). It was then that their research can be accelerated if the analyzes of quality biodiesel that are influenced by the chemical composition are replaced by a single analysis of chemical composition and this composition is used to predict the results of other analyzes of quality. For this, was developed the Sys-PANN, software able to find the best ANN for each type of analysis and predict your results. === A predição é uma ação para tomada de decisão. Quanto menor for o erro da predição, menor será o prejuízo pela decisão tomada. Uma técnica que vem sendo muito utiliza com sucesso para predição é a Rede Neural Artificial (RNA). Ela é uma ferramenta computacional, inspirado no cérebro humano e que possui uma grande capacidade de modelar problemas complexos do mundo real através de uma fase chamada de treinamento que possibilita a ela aprender as caracteristicas do problema proposto. As RNAs têm o potencial de descobrir relações complexas entre os dados de entrada e a resposta por isso elas se tornaram muito úteis na área da predição. Pelo ótimo desempenho nas mais diversas áreas de conhecimento, decidiu-se verificar a sua eficácia no Biodiesel. Ele é um combustível renovável gerado a partir de oleos de origem animal ou vegetal para ser utilizado em motores a diesel. Ele possui diversos benefícios sobre diesel mineral e no momento, sua produção e utilização recebe grandes estímulos do governo federal, através do Programa Nacional de Produção e Uso do Biodiesel (PNPB). Com isso, o interesse pela pesquisa de Biodiesel cresceu no Estado do Maranhão. A verificação de qualidade do Biodiesel é realizada pelo Laboratório de Pesquisas Química e Analítica (LPQA/UFMA). Verificou-se, então que suas pesquisas podem ser aceleradas se as análises de qualidade do biodiesel que são influenciadas pela composição química forem substituídas por uma única análise de composição química. Esta composição foi utilizada para predizer os resultados dessas outras análises de qualidade. Para isso, desenvolveu-se o Sys-PANN, um software capaz de encontrar a melhor RNA para cada tipo de análise e predizer seus resultados. |
author2 |
Labidi, Sofiane |
author_facet |
Labidi, Sofiane Rêgo, Adriano dos Santos |
author |
Rêgo, Adriano dos Santos |
author_sort |
Rêgo, Adriano dos Santos |
title |
PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS |
title_short |
PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS |
title_full |
PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS |
title_fullStr |
PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS |
title_full_unstemmed |
PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS |
title_sort |
predição de parâmetros de qualidade do biodiesel utilizando redes neurais artificiais |
publisher |
Universidade Federal do Maranhão |
publishDate |
2016 |
url |
http://tedebc.ufma.br:8080/jspui/handle/tede/507 |
work_keys_str_mv |
AT regoadrianodossantos predicaodeparametrosdequalidadedobiodieselutilizandoredesneuraisartificiais AT regoadrianodossantos predictionofparametersofqualitybiodieselusingartificialneuralnetworks |
_version_ |
1718925681543348224 |
spelling |
ndltd-IBICT-oai-tede2-tede-5072019-01-22T00:41:43Z PREDIÇÃO DE PARÂMETROS DE QUALIDADE DO BIODIESEL UTILIZANDO REDES NEURAIS ARTIFICIAIS PREDICTION OF PARAMETERS OF QUALITY BIODIESEL USING ARTIFICIAL NEURAL NETWORKS Rêgo, Adriano dos Santos Labidi, Sofiane Marques, Aldaléa Lopes Brandes Abdelouahab, Zair Predição Biodiesel Redes Neurais Artificiais Sys-PANN Prediction Biodiesel Artificial Neural Networks Sys-PANN CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Made available in DSpace on 2016-08-17T14:53:25Z (GMT). No. of bitstreams: 1 Dissertacao Adriano.pdf: 2821465 bytes, checksum: 7a776e55ceec26edfda184c6290c99ee (MD5) Previous issue date: 2013-12-11 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior The prediction is an action for decisions making. The smaller the error of the prediction, the lower the loss by decision taken. One technique that has been used very successfully to predict is the Artificial Neural Network (ANN). It is a computational tool, inspired by the human brain and has a great ability to model complex real-world problems through a phase called training enables it to learn the characteristics of the proposed problem. The ANNs have the potential to discover complex relations between input data and response so they become very useful in the prediction area. For optimal performance in various areas of knowledge, it was decided to assess its efficiency in a sector, the Biodiesel. It is a renewable fuel generated from oils of animal or vegetable to be used in diesel engines. It has several benefits over mineral diesel and at the time, their production and use gets great stimuli federal government, through the National Program for Production and Use of Biodiesel. Thus, interest in research grew and Biodiesel in the state of Maranhão is performed by the Laboratory of Chemical Research & Analytics (LPQA / UFMA). It was then that their research can be accelerated if the analyzes of quality biodiesel that are influenced by the chemical composition are replaced by a single analysis of chemical composition and this composition is used to predict the results of other analyzes of quality. For this, was developed the Sys-PANN, software able to find the best ANN for each type of analysis and predict your results. A predição é uma ação para tomada de decisão. Quanto menor for o erro da predição, menor será o prejuízo pela decisão tomada. Uma técnica que vem sendo muito utiliza com sucesso para predição é a Rede Neural Artificial (RNA). Ela é uma ferramenta computacional, inspirado no cérebro humano e que possui uma grande capacidade de modelar problemas complexos do mundo real através de uma fase chamada de treinamento que possibilita a ela aprender as caracteristicas do problema proposto. As RNAs têm o potencial de descobrir relações complexas entre os dados de entrada e a resposta por isso elas se tornaram muito úteis na área da predição. Pelo ótimo desempenho nas mais diversas áreas de conhecimento, decidiu-se verificar a sua eficácia no Biodiesel. Ele é um combustível renovável gerado a partir de oleos de origem animal ou vegetal para ser utilizado em motores a diesel. Ele possui diversos benefícios sobre diesel mineral e no momento, sua produção e utilização recebe grandes estímulos do governo federal, através do Programa Nacional de Produção e Uso do Biodiesel (PNPB). Com isso, o interesse pela pesquisa de Biodiesel cresceu no Estado do Maranhão. A verificação de qualidade do Biodiesel é realizada pelo Laboratório de Pesquisas Química e Analítica (LPQA/UFMA). Verificou-se, então que suas pesquisas podem ser aceleradas se as análises de qualidade do biodiesel que são influenciadas pela composição química forem substituídas por uma única análise de composição química. Esta composição foi utilizada para predizer os resultados dessas outras análises de qualidade. Para isso, desenvolveu-se o Sys-PANN, um software capaz de encontrar a melhor RNA para cada tipo de análise e predizer seus resultados. 2016-08-17T14:53:25Z 2014-01-23 2013-12-11 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis RÊGO, Adriano dos Santos. PREDICTION OF PARAMETERS OF QUALITY BIODIESEL USING ARTIFICIAL NEURAL NETWORKS. 2013. 119 f. Dissertação (Mestrado em Engenharia) - Universidade Federal do Maranhão, São Luís, 2013. http://tedebc.ufma.br:8080/jspui/handle/tede/507 por info:eu-repo/semantics/openAccess application/pdf Universidade Federal do Maranhão PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET UFMA BR Engenharia reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão instacron:UFMA |