Classificação de câncer de ovário através de padrão proteômico e análise de componentes independentes

Made available in DSpace on 2016-08-17T14:53:21Z (GMT). No. of bitstreams: 1 dissertacao Simone Cristina.pdf: 915238 bytes, checksum: 6eb097a7ebfb66da176cd431d9883ba3 (MD5) Previous issue date: 2012-07-24 === The ovarian cancer is difficult to diagnose in the early stages of development. In this...

Full description

Bibliographic Details
Main Author: Neves, Simone Cristina Ferreira
Other Authors: BARROS FILHO, Allan Kardec Duailibe
Format: Others
Language:Portuguese
Published: Universidade Federal do Maranhão 2016
Subjects:
Online Access:http://tedebc.ufma.br:8080/jspui/handle/tede/490
Description
Summary:Made available in DSpace on 2016-08-17T14:53:21Z (GMT). No. of bitstreams: 1 dissertacao Simone Cristina.pdf: 915238 bytes, checksum: 6eb097a7ebfb66da176cd431d9883ba3 (MD5) Previous issue date: 2012-07-24 === The ovarian cancer is difficult to diagnose in the early stages of development. In this work we bring a study of a new method that gave us great accuracy rates based on a bioinformatics tool called surface enhanced for laser desorption and ionization (SELDI-TOF) used to generate proteomic patterns which is one of the technologies advanced in the diagnosis. Our goal is to contribute to effectiveness of this tool, which already helps diagnosis earlier, our methodology uses independent component analysis (ICA) for feature extraction and neural networks to classify between malignancy and no malignancy in a database of the research center cancer in the U.S.A. Our work rates obtained acurracy 97%, 98% specificity and 96% sensitivity. === O câncer de ovário possui difícil diagnóstico nas primeiras fases de desenvolvimento. Neste trabalho trazemos um estudo de um novo método que nos deu ótimas taxas de precisão baseado em uma ferramenta da bio-informática chamada superfície mehorada a laser para ionização e dessorção (SELDI-TOF) usada para geração de padrões proteômicos que é uma das tecnologias mais avançada no auxílio ao diagnóstico. Nosso objetivo é contribuir para eficácia desta esta ferramenta, que já auxilia o dignóstico precoce, nossa metodologia usa análise de componentes independentes (ICA) para extração de caractéristicas e redes neurais para classificar entre malignidade e não malignidade em uma base de dados do centro de pesquisa do câncer nos EUA. Nosso trabalho obteve taxas de 97% de acurária, 98% de especifidade e 96 % de sensibilidade.