APRENDIZAGEM POR REFORÇO E PROGRAMACÃO DINÂMICA ADAPTATIVA PARA PROJETO E AVALIAÇÃO DO DESEMPENHO DE ALGORITMOS DLQR EM SISTEMAS MIMO

Made available in DSpace on 2016-08-17T14:53:16Z (GMT). No. of bitstreams: 1 Leandro Rocha Lopes.pdf: 1075564 bytes, checksum: 01e184ed6d7c65323c0dfc1515da19a3 (MD5) Previous issue date: 2011-04-04 === Due to the increasing of technological development and its associated industrial applications,...

Full description

Bibliographic Details
Main Author: Lopes, Leandro Rocha
Other Authors: Fonseca Neto, João Viana da
Format: Others
Language:Portuguese
Published: Universidade Federal do Maranhão 2016
Subjects:
HDP
Online Access:http://tedebc.ufma.br:8080/jspui/handle/tede/462
Description
Summary:Made available in DSpace on 2016-08-17T14:53:16Z (GMT). No. of bitstreams: 1 Leandro Rocha Lopes.pdf: 1075564 bytes, checksum: 01e184ed6d7c65323c0dfc1515da19a3 (MD5) Previous issue date: 2011-04-04 === Due to the increasing of technological development and its associated industrial applications, control design methods to attend high performance requests and reinforcement learning are been developed, not only, to solve new problems, as well as, to improve the performance of implemented controllers in the real systems. The reinforcement learning (RL) and discrete linear quadratic regulator (DLQR) approaches are connected by adaptive dynamic programming (ADP). This connection is oriented to the design of optimal controller for multivariable systems (MIMO). The proposed method for DLQR controllers tuning can been heuristic guidance for biased variations in weighting matrices of instantenous reward. The heuristics performance are evaluated in terms of convergence of heuristic dynamic programming (HDP) and action dependent (AD-HDP) algorithms. The algorithms and tuning are evaluated by the capability to map the plane-Z in MIMO dynamic system of third order. === Em decorrência do crescente desenvolvimento tecnológico e das consequentes aplicações industriais, técnicas de controle de alto desempenho e aprendizado por reforço estão sendo desenvolvidas não só para solucionar novos problemas, mas também para melhorar o desempenho de controladores já implementados em sistemas do mundo real. As abordagens do aprendizado por reforço e do regulador linear quadrático discreto (DLQR) são conectadas pelos métodos de programação dinâmica adaptativa. Esta união é orientada para o projeto de controladores ótimos em sistemas multivariáveis (MIMO). O método proposto para sintonia de controladores DLQR fornece diretrizes para construção de heurísticas polarizadas que são aplicadas na seleção das matrizes de ponderação da recompensa instantânea. Investiga-se o desempenho das heurísticas associadas com a sintonia de controladores lineares discretos e aspectos de convergência que estão relacionados com as variações QR nos algoritmos de programação dinâmica heurística (HDP) e Ação Dependente (ADHDP). Os algoritmos e a sintonia são avaliados pela capacidade em estabelecer a política de controle ótimo que mapeia o plano-Z em um sistema dinãmico multivariável de terceira ordem.