Classificação de Lesões em Mamografias Digitais Utilizando Análise de Componentes Independentes e Perceptron Multicamadas

Made available in DSpace on 2016-08-17T14:52:50Z (GMT). No. of bitstreams: 1 Lucio Flavio de Albuquerque Campos.pdf: 558329 bytes, checksum: 1be43a8cd03ed147f8b5187d7e538e5a (MD5) Previous issue date: 2006-03-24 === We propose a method for discrimination and classification of mammograms with ben...

Full description

Bibliographic Details
Main Author: Campos, Lucio Flavio de Albuquerque
Other Authors: BARROS FILHO, Allan Kardec Duailibe
Format: Others
Language:Portuguese
Published: Universidade Federal do Maranhão 2016
Subjects:
Online Access:http://tedebc.ufma.br:8080/jspui/handle/tede/344
Description
Summary:Made available in DSpace on 2016-08-17T14:52:50Z (GMT). No. of bitstreams: 1 Lucio Flavio de Albuquerque Campos.pdf: 558329 bytes, checksum: 1be43a8cd03ed147f8b5187d7e538e5a (MD5) Previous issue date: 2006-03-24 === We propose a method for discrimination and classification of mammograms with benign, malignant and normal tissues using independent component analysis and neural networks. The method was tested for a mammogram set from MIAS database, and multilayer perceptron. The method obtained a success rate of 97.83% , with 97.5% of specificity and 98% of sensitivity. === Neste trabalho, propomos um método para discriminação e classificação de mamogramas, com diagnóstico maligno, benigno e normal, usando análise de componentes independentes e redes neurais. O método foi testado com mamogramas da MIAS database, e com redes perceptron multicamadas. O método obteve uma taxa de sucesso média de 97.83%, com 97.5% de especificidade, e 98% de sensibilidade.