Estatística espacial aplicada à agricultura de precisão

Made available in DSpace on 2017-05-12T14:48:03Z (GMT). No. of bitstreams: 1 Gustavo Henrique Dalposso.pdf: 751881 bytes, checksum: d4ec13dacd0e510c7549e67525afd909 (MD5) Previous issue date: 2010-01-13 === The methods provided by the spatial statistics are of great importance for studies involvin...

Full description

Bibliographic Details
Main Author: Dalposso, Gustavo Henrique
Other Authors: Opazo, Miguel Angel Uribe
Format: Others
Language:Portuguese
Published: Universidade Estadual do Oeste do Parana 2017
Subjects:
Online Access:http://tede.unioeste.br:8080/tede/handle/tede/324
Description
Summary:Made available in DSpace on 2017-05-12T14:48:03Z (GMT). No. of bitstreams: 1 Gustavo Henrique Dalposso.pdf: 751881 bytes, checksum: d4ec13dacd0e510c7549e67525afd909 (MD5) Previous issue date: 2010-01-13 === The methods provided by the spatial statistics are of great importance for studies involving data related to agriculture, for they allow one to know the space variability of the study and identify regions that have similar characteristics, which allows completely localized treatment, maximizing productivity and minimizing the impacts of excessive input application. One of the branches of spatial statistics is geostatistics, which uses a set of regionalized variables to model the structure of spatial dependence, allowing the preparation of thematic maps. Currently, geostatistical studies do not end with the preparation of maps, but also estimates monitored the attribute in non-sampled locations. It is necessary to investigate the quality of these maps, investigating influential points and using measurements to compare maps and area estimations. Another form of research is known as spatial statistics of areas where the objects of analysis are polygons representing blocks, neighborhoods, cities, states and others. This type of analysis seeks to identify spatial autocorrelation in global and local levels, and the usual form of reporting is through thematic maps. In this work we used geostatistics to investigate the productivity of wheat in an agricultural area of 13.7 hectares in the municipality of Salto do Lontra PR. Out of the 50 samples, two were identified as influential, and thus, we chose to build two thematic maps and to compare them using metrics derived from the matrix of errors. The results showed that the maps are different and the removal of influential points was essential to improve the quality of thematic map, since the difference between the estimated yield and actual yield was only 40 Kilos. In order to display the resources provided by the spatial statistics of areas we compared to the vegetation rates NDVI and GVI's of soybean yield from 36 cities in Western Paraná in the agricultural year of 2004/2005. The results showed regions with similar characteristics and that soybeans grow at different times in the region. === As metodologias fornecidas pela estatística espacial são de grande importância para estudos envolvendo dados relacionados à agricultura, pois permitem conhecer a variabilidade espacial dos atributos estudados e identificar regiões que apresentam características semelhantes, o que permite realizar tratamentos localizados, maximizando as produtividades e minimizando os impactos causados pela aplicação de insumos em excesso. Um dos ramos da estatística espacial é a geoestatística, que utiliza um conjunto de variáveis regionalizadas para modelar a estrutura de dependência espacial, possibilitando a elaboração de mapas temáticos. Atualmente os estudos geoestatísticos não terminam com a elaboração dos mapas, pois além de estimar o atributo monitorado em locais não amostrados se faz necessário investigar a qualidade destes mapas, investigando pontos influentes e utilizando medidas que permitam comparar mapas e realizar estimações de áreas. Outra forma de investigação é conhecida como estatística espacial de áreas, em que os objetos de análise são polígonos que representam talhões, bairros, municípios, estados entre outros. Neste tipo de análise, procura-se identificar autocorrelações espaciais em nível global e local, e a forma usual de apresentação dos resultados é feita utilizando mapas temáticos. Neste trabalho utilizou-se a geoestatística para investigar a produtividade de trigo em uma área agrícola de 13,7 hectares no município de Salto do Lontra Pr. Das 50 amostras coletadas, identificou-se duas como influentes e, com isso, optou-se por construir dois mapas temáticos e compará-los utilizando métricas derivadas da matriz dos erros. Os resultados mostraram que os mapas são diferentes e a retirada dos pontos influentes foi de fundamental importância para melhorar a qualidade do mapa temático, visto que a diferença entre a produtividade estimada e a produtividade real foi de apenas 40 quilos. Para apresentar os recursos fornecidos pela estatística espacial de áreas comparou-se os índices de vegetação NDVI e GVI da produtividade de soja de 36 municípios da região Oeste do Paraná no ano agrícola 2004/2005. Os resultados permitiram identificar regiões com características semelhantes e que a soja é cultivada em períodos distintos na região.