Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo

Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2017-09-18T14:32:46Z No. of bitstreams: 1 Alan_Gavioli2017.pdf: 4935513 bytes, checksum: 58816f2871fee27474b2fd5e511826af (MD5) === Made available in DSpace on 2017-09-18T14:32:46Z (GMT). No. of bitstreams: 1 Alan_Gavioli2017.pdf: 493551...

Full description

Bibliographic Details
Main Author: Gavioli, Alan
Other Authors: Souza, Eduardo Godoy de
Format: Others
Language:Portuguese
Published: Universidade Estadual do Oeste do Paraná 2017
Subjects:
Online Access:http://tede.unioeste.br/handle/tede/3063
id ndltd-IBICT-oai-tede.unioeste.br-tede-3063
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Agricultura de precisão
Agrupamento de dados
Análise de componentes principais
Multispati-PCA
Software para agricultura
Principal component analysis
Data clustering
Multispati-PCA
Precision agriculture
Software for agriculture
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
spellingShingle Agricultura de precisão
Agrupamento de dados
Análise de componentes principais
Multispati-PCA
Software para agricultura
Principal component analysis
Data clustering
Multispati-PCA
Precision agriculture
Software for agriculture
CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Gavioli, Alan
Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo
description Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2017-09-18T14:32:46Z No. of bitstreams: 1 Alan_Gavioli2017.pdf: 4935513 bytes, checksum: 58816f2871fee27474b2fd5e511826af (MD5) === Made available in DSpace on 2017-09-18T14:32:46Z (GMT). No. of bitstreams: 1 Alan_Gavioli2017.pdf: 4935513 bytes, checksum: 58816f2871fee27474b2fd5e511826af (MD5) Previous issue date: 2017-02-17 === Two basic activities for the definition of quality management zones (MZs) are the variable selection task and the cluster analysis task. There are several methods proposed to execute them, but due to their complexity, they need to be made available by computer systems. In this study, 5 methods based on spatial correlation analysis, principal component analysis (PCA) and multivariate spatial analysis based on Moran’s index and PCA (MULTISPATI-PCA) were evaluated. A new variable selection algorithm, named MPCA-SC, based on the combined use of spatial correlation analysis and MULTISPATI-PCA, was proposed. The potential use of 20 clustering algorithms for the generation of MZs was evaluated: average linkage, bagged clustering, centroid linkage, clustering large applications, complete linkage, divisive analysis, fuzzy analysis clustering (fanny), fuzzy c-means, fuzzy c-shells, hard competitive learning, hybrid hierarchical clustering, k-means, McQuitty’s method (mcquitty), median linkage, neural gas, partitioning around medoids, single linkage, spherical k-means, unsupervised fuzzy competitive learning, and Ward’s method. Two computational modules developed to provide the variable selection and data clustering methods for definition of MZs were also presented. The evaluations were conducted with data obtained between 2010 and 2015 in three commercial agricultural areas, cultivated with soybean and corn, in the state of Paraná, Brazil. The experiments performed to evaluate the 5 variable selection algorithms showed that the new method MPCA-SC can improve the quality of MZs in several aspects, even obtaining satisfactory results with the other 4 algorithms. The evaluation experiments of the 20 clustering methods showed that 17 of them were suitable for the delineation of MZs, especially fanny and mcquitty. Finally, it was concluded that the two computational modules developed made it possible to obtain quality MZs. Furthermore, these modules constitute a more complete computer system than other free-to-use software such as FuzME, MZA, and SDUM, in terms of the diversity of variable selection and data clustering algorithms. === A seleção de variáveis e a análise de agrupamento de dados são atividades fundamentais para a definição de zonas de manejo (ZMs) de qualidade. Para executar essas duas atividades, existem diversos métodos propostos, que devido à sua complexidade precisam ser executados por meio da utilização de sistemas computacionais. Neste trabalho, avaliaramse 5 métodos de seleção de variáveis baseados em análise de correlação espacial, análise de componentes principais (ACP) e análise espacial multivariada baseada no índice de Moran e em ACP (MULTISPATI-PCA). Propôs-se um novo algoritmo de seleção de variáveis, denominado MPCA-SC, desenvolvido a partir da aplicação conjunta da análise de correlação espacial e de MULTISPATI-PCA. Avaliou-se a viabilidade de aplicação de 20 algoritmos de agrupamento de dados para a geração de ZMs: average linkage, bagged clustering, centroid linkage, clustering large applications, complete linkage, divisive analysis, fuzzy analysis clustering (fanny), fuzzy c-means, fuzzy c-shells, hard competitive learning, hybrid hierarchical clustering, k-means, median linkage, método de McQuitty (mcquitty), método de Ward, neural gas, partitioning around medoids, single linkage, spherical k-means e unsupervised fuzzy competitive learning. Apresentaram-se ainda dois módulos computacionais desenvolvidos para disponibilizar os métodos de seleção de variáveis e de agrupamento de dados para a definição de ZMs. As avaliações foram realizadas com dados obtidos entre os anos de 2010 e 2015 de três áreas agrícolas comerciais, localizadas no estado do Paraná, nas quais cultivaram-se milho e soja. Os experimentos efetuados para avaliar os 5 algoritmos de seleção de variáveis mostraram que o novo método MPCA-SC pode melhorar a qualidade de ZMs em diversos aspectos, mesmo obtendo-se resultados satisfatórios com os outros 4 algoritmos. Os experimentos de avaliação dos 20 métodos de agrupamento citados mostraram que 17 deles foram adequados para o delineamento de ZMs, com destaque para fanny e mcquitty. Por fim, concluiu-se que os dois módulos computacionais desenvolvidos possibilitaram a obtenção de ZMs de qualidade. Além disso, esses módulos constituem uma ferramenta computacional mais abrangente que outros softwares de uso gratuito, como FuzME, MZA e SDUM, em relação à diversidade de algoritmos disponibilizados para selecionar variáveis e agrupar dados.
author2 Souza, Eduardo Godoy de
author_facet Souza, Eduardo Godoy de
Gavioli, Alan
author Gavioli, Alan
author_sort Gavioli, Alan
title Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo
title_short Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo
title_full Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo
title_fullStr Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo
title_full_unstemmed Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo
title_sort módulos computacionais para seleção de variáveis e análise de agrupamento para definição de zonas de manejo
publisher Universidade Estadual do Oeste do Paraná
publishDate 2017
url http://tede.unioeste.br/handle/tede/3063
work_keys_str_mv AT gaviolialan moduloscomputacionaisparaselecaodevariaveiseanalisedeagrupamentoparadefinicaodezonasdemanejo
AT gaviolialan computationalmodulesforvariableselectionandclusteranalysisfordefinitionofmanagementzones
_version_ 1718928848006938624
spelling ndltd-IBICT-oai-tede.unioeste.br-tede-30632019-01-22T00:59:57Z Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo Computational modules for variable selection and cluster analysis for definition of management zones Gavioli, Alan Souza, Eduardo Godoy de Bazzi, Claudio Leones Guedes, Luciana Pagliosa Carvalho Pinheiro Neto, Raimundo Gonçalves, Antonio Carlos Andrade Maggi, Marcio Furlan Agricultura de precisão Agrupamento de dados Análise de componentes principais Multispati-PCA Software para agricultura Principal component analysis Data clustering Multispati-PCA Precision agriculture Software for agriculture CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2017-09-18T14:32:46Z No. of bitstreams: 1 Alan_Gavioli2017.pdf: 4935513 bytes, checksum: 58816f2871fee27474b2fd5e511826af (MD5) Made available in DSpace on 2017-09-18T14:32:46Z (GMT). No. of bitstreams: 1 Alan_Gavioli2017.pdf: 4935513 bytes, checksum: 58816f2871fee27474b2fd5e511826af (MD5) Previous issue date: 2017-02-17 Two basic activities for the definition of quality management zones (MZs) are the variable selection task and the cluster analysis task. There are several methods proposed to execute them, but due to their complexity, they need to be made available by computer systems. In this study, 5 methods based on spatial correlation analysis, principal component analysis (PCA) and multivariate spatial analysis based on Moran’s index and PCA (MULTISPATI-PCA) were evaluated. A new variable selection algorithm, named MPCA-SC, based on the combined use of spatial correlation analysis and MULTISPATI-PCA, was proposed. The potential use of 20 clustering algorithms for the generation of MZs was evaluated: average linkage, bagged clustering, centroid linkage, clustering large applications, complete linkage, divisive analysis, fuzzy analysis clustering (fanny), fuzzy c-means, fuzzy c-shells, hard competitive learning, hybrid hierarchical clustering, k-means, McQuitty’s method (mcquitty), median linkage, neural gas, partitioning around medoids, single linkage, spherical k-means, unsupervised fuzzy competitive learning, and Ward’s method. Two computational modules developed to provide the variable selection and data clustering methods for definition of MZs were also presented. The evaluations were conducted with data obtained between 2010 and 2015 in three commercial agricultural areas, cultivated with soybean and corn, in the state of Paraná, Brazil. The experiments performed to evaluate the 5 variable selection algorithms showed that the new method MPCA-SC can improve the quality of MZs in several aspects, even obtaining satisfactory results with the other 4 algorithms. The evaluation experiments of the 20 clustering methods showed that 17 of them were suitable for the delineation of MZs, especially fanny and mcquitty. Finally, it was concluded that the two computational modules developed made it possible to obtain quality MZs. Furthermore, these modules constitute a more complete computer system than other free-to-use software such as FuzME, MZA, and SDUM, in terms of the diversity of variable selection and data clustering algorithms. A seleção de variáveis e a análise de agrupamento de dados são atividades fundamentais para a definição de zonas de manejo (ZMs) de qualidade. Para executar essas duas atividades, existem diversos métodos propostos, que devido à sua complexidade precisam ser executados por meio da utilização de sistemas computacionais. Neste trabalho, avaliaramse 5 métodos de seleção de variáveis baseados em análise de correlação espacial, análise de componentes principais (ACP) e análise espacial multivariada baseada no índice de Moran e em ACP (MULTISPATI-PCA). Propôs-se um novo algoritmo de seleção de variáveis, denominado MPCA-SC, desenvolvido a partir da aplicação conjunta da análise de correlação espacial e de MULTISPATI-PCA. Avaliou-se a viabilidade de aplicação de 20 algoritmos de agrupamento de dados para a geração de ZMs: average linkage, bagged clustering, centroid linkage, clustering large applications, complete linkage, divisive analysis, fuzzy analysis clustering (fanny), fuzzy c-means, fuzzy c-shells, hard competitive learning, hybrid hierarchical clustering, k-means, median linkage, método de McQuitty (mcquitty), método de Ward, neural gas, partitioning around medoids, single linkage, spherical k-means e unsupervised fuzzy competitive learning. Apresentaram-se ainda dois módulos computacionais desenvolvidos para disponibilizar os métodos de seleção de variáveis e de agrupamento de dados para a definição de ZMs. As avaliações foram realizadas com dados obtidos entre os anos de 2010 e 2015 de três áreas agrícolas comerciais, localizadas no estado do Paraná, nas quais cultivaram-se milho e soja. Os experimentos efetuados para avaliar os 5 algoritmos de seleção de variáveis mostraram que o novo método MPCA-SC pode melhorar a qualidade de ZMs em diversos aspectos, mesmo obtendo-se resultados satisfatórios com os outros 4 algoritmos. Os experimentos de avaliação dos 20 métodos de agrupamento citados mostraram que 17 deles foram adequados para o delineamento de ZMs, com destaque para fanny e mcquitty. Por fim, concluiu-se que os dois módulos computacionais desenvolvidos possibilitaram a obtenção de ZMs de qualidade. Além disso, esses módulos constituem uma ferramenta computacional mais abrangente que outros softwares de uso gratuito, como FuzME, MZA e SDUM, em relação à diversidade de algoritmos disponibilizados para selecionar variáveis e agrupar dados. 2017-09-18T14:32:46Z 2017-02-17 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis GAVIOLI, Alan. Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo. 2017. 128 f. Tese (Doutorado - Programa de Pós-Graduação em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel, 2017 . http://tede.unioeste.br/handle/tede/3063 por -5347692450416052129 600 600 600 2214374442868382015 9185445721588761555 info:eu-repo/semantics/openAccess application/pdf Universidade Estadual do Oeste do Paraná Cascavel 6588633818200016417 500 Programa de Pós-Graduação em Engenharia Agrícola UNIOESTE Brasil Centro de Ciências Exatas e Tecnológicas reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná instacron:UNIOESTE