Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo

Made available in DSpace on 2017-05-12T14:47:10Z (GMT). No. of bitstreams: 1 Ademir Natal Correa.pdf: 1505539 bytes, checksum: fd8e294f5766bf4043789d75eba28f1f (MD5) Previous issue date: 2007-07-16 === The objective of this study was to assess the relationship among soil physical attributes and th...

Full description

Bibliographic Details
Main Author: Corrêa, Ademir Natal
Other Authors: Tavares, Maria Hermínia Ferreira
Format: Others
Language:Portuguese
Published: Universidade Estadual do Oeste do Parana 2017
Subjects:
Online Access:http://tede.unioeste.br:8080/tede/handle/tede/211
id ndltd-IBICT-oai-tede.unioeste.br-tede-211
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Autocorrelação
crosscorrelação
geoestatística
dependência espacial
filtro de Kalman
regressão linear dinâmica
Autocorrelation
crosscorrelation
geostatistics
spatial dependence
Kalman filter
dynamic linear regression
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
spellingShingle Autocorrelação
crosscorrelação
geoestatística
dependência espacial
filtro de Kalman
regressão linear dinâmica
Autocorrelation
crosscorrelation
geostatistics
spatial dependence
Kalman filter
dynamic linear regression
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
Corrêa, Ademir Natal
Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
description Made available in DSpace on 2017-05-12T14:47:10Z (GMT). No. of bitstreams: 1 Ademir Natal Correa.pdf: 1505539 bytes, checksum: fd8e294f5766bf4043789d75eba28f1f (MD5) Previous issue date: 2007-07-16 === The objective of this study was to assess the relationship among soil physical attributes and their influences on wheat yield. For this purpose an estimating method, called State-Space Model or dynamic linear regression model, was used and compared to simple and multiple regression models of classical statistics. Experimental data were obtained at a Rhodic Ferralsol, originated from UNIOESTE Agricultural Engineering Experimental Nucleus Cascavel Campus, in an area where wheat was grown. In this area, 3 equally spaced transects, with 97 sampling points, 3.0 meters away from each other, were delimited. The State-Space approach was used to assess wheat yield estimate on position i, influenced by wheat yield, bulk density, soil compaction degree and soil resistance to penetration on position i-1 in different combination between data series of these variables. Applying the State-Space approach, all the response variables presented significant correlation with the dependent variable: soil resistance to penetration was the attribute with the best correlation, presenting R2 coefficient equal to 0.849. The other attributes had R2 coefficient of around 0.800. Comparing to conventional static models, soil resistance to penetration attribute had R2 coefficient equal to 0.102. The other attributes had R2 coefficient equal or less than 0.087, in conventional regression. Utilizing the State-Space approach, the two combinations that indicated the best results were: 1) between wheat yield and soil resistance to penetration that showed the best estimate to wheat yield with R2 coefficient equal to 0.849, while the same combination in conventional regression presented R2 equal to 0.102; 2) between wheat yield, soil compaction degree and soil resistance to penetration, with R2 coefficient equal to 0.836, while the same combination in classical regression presented R2 equal to 0.217. Thus, it is possible to show the advantage of the State-Space approach in relation to other more conventional regression methods for estimating and forecasting in soil-plant system relationship. === Este trabalho foi realizado com o objetivo de estudar o relacionamento entre os atributos físicos do solo e a influência destes na produtividade de trigo. Para isso, utilizou-se o método de estimação chamado de Modelo de Espaço de Estados ou modelo de regressão linear dinâmico, comparando-o aos modelos de regressão simples e múltipla da estatística clássica. Os dados experimentais foram obtidos em um Latossolo Vermelho-Escuro pertencente ao Núcleo Experimental de Engenharia Agrícola da Universidade Estadual do Oeste do Paraná Campus de Cascavel, em uma área cultivada com trigo. Foram demarcadas 3 transeções com 97 pontos de amostragem espaçados de 3 m entre si. A abordagem de Espaço de Estados foi usada para avaliar a estimativa da produtividade do trigo na posição i, influenciada por medidas da produtividade do trigo, da densidade do solo, do grau de compactação do solo e da resistência do solo à penetração na posição i-1, em diferentes combinações entre as séries de dados dessas variáveis. Com a aplicação da abordagem de Espaço de Estados, todas as variáveis explicativas utilizadas apresentaram correlação significativa com a variável dependente: a resistência do solo à penetração foi o atributo com a melhor correlação, apresentando o coeficiente de ajuste R2 igual a 0,849. Os demais atributos tiveram os coeficientes R2 em torno de 0,800. Comparando-se com os modelos estáticos convencionais, o atributo resistência do solo à penetração teve o coeficiente de ajuste R2 igual a 0,102 e os demais atributos tiveram os seus coeficientes R2 abaixo de 0,087, na regressão convencional. Utilizando a metodologia de Espaço de Estados, as duas combinações que indicaram os melhores resultados foram a combinação entre produtividade do trigo e resistência do solo à penetração, que apresentou a melhor estimativa para produtividade do trigo, com coeficiente R2 igual a 0,849. A mesma combinação na regressão convencional resultou em R2 igual a 0,102. A segunda melhor combinação ocorreu entre os atributos: produtividade do trigo, grau de compactação do solo e resistência do solo à penetração, com R2 igual a 0,836, sendo que a mesma combinação na regressão clássica teve o coeficiente R2 igual a 0,217. Com isso é possível mostrar-se a vantagem da abordagem de Espaço de Estados em relação a outros métodos de estimativa e previsão para o relacionamento no sistema solo-planta.
author2 Tavares, Maria Hermínia Ferreira
author_facet Tavares, Maria Hermínia Ferreira
Corrêa, Ademir Natal
author Corrêa, Ademir Natal
author_sort Corrêa, Ademir Natal
title Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
title_short Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
title_full Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
title_fullStr Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
title_full_unstemmed Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
title_sort abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo
publisher Universidade Estadual do Oeste do Parana
publishDate 2017
url http://tede.unioeste.br:8080/tede/handle/tede/211
work_keys_str_mv AT correaademirnatal abordagemdeespacodeestadosnorelacionamentoentreatributosfisicosdosoloeprodutividadedotrigo
AT correaademirnatal statespaceapproachintherelationshipamongsoilphysicalattributesandwheatyield
_version_ 1718927339992121344
spelling ndltd-IBICT-oai-tede.unioeste.br-tede-2112019-01-22T00:52:55Z Abordagem de espaço de estados no relacionamento entre atributos físicos do solo e produtividade do trigo State-space approach in the relationship among soil physical attributes and wheat yield Corrêa, Ademir Natal Tavares, Maria Hermínia Ferreira Opazo, Miguel Angel Uribe Zara, Reginaldo Aparecido Timm, Luís Carlos Autocorrelação crosscorrelação geoestatística dependência espacial filtro de Kalman regressão linear dinâmica Autocorrelation crosscorrelation geostatistics spatial dependence Kalman filter dynamic linear regression CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA Made available in DSpace on 2017-05-12T14:47:10Z (GMT). No. of bitstreams: 1 Ademir Natal Correa.pdf: 1505539 bytes, checksum: fd8e294f5766bf4043789d75eba28f1f (MD5) Previous issue date: 2007-07-16 The objective of this study was to assess the relationship among soil physical attributes and their influences on wheat yield. For this purpose an estimating method, called State-Space Model or dynamic linear regression model, was used and compared to simple and multiple regression models of classical statistics. Experimental data were obtained at a Rhodic Ferralsol, originated from UNIOESTE Agricultural Engineering Experimental Nucleus Cascavel Campus, in an area where wheat was grown. In this area, 3 equally spaced transects, with 97 sampling points, 3.0 meters away from each other, were delimited. The State-Space approach was used to assess wheat yield estimate on position i, influenced by wheat yield, bulk density, soil compaction degree and soil resistance to penetration on position i-1 in different combination between data series of these variables. Applying the State-Space approach, all the response variables presented significant correlation with the dependent variable: soil resistance to penetration was the attribute with the best correlation, presenting R2 coefficient equal to 0.849. The other attributes had R2 coefficient of around 0.800. Comparing to conventional static models, soil resistance to penetration attribute had R2 coefficient equal to 0.102. The other attributes had R2 coefficient equal or less than 0.087, in conventional regression. Utilizing the State-Space approach, the two combinations that indicated the best results were: 1) between wheat yield and soil resistance to penetration that showed the best estimate to wheat yield with R2 coefficient equal to 0.849, while the same combination in conventional regression presented R2 equal to 0.102; 2) between wheat yield, soil compaction degree and soil resistance to penetration, with R2 coefficient equal to 0.836, while the same combination in classical regression presented R2 equal to 0.217. Thus, it is possible to show the advantage of the State-Space approach in relation to other more conventional regression methods for estimating and forecasting in soil-plant system relationship. Este trabalho foi realizado com o objetivo de estudar o relacionamento entre os atributos físicos do solo e a influência destes na produtividade de trigo. Para isso, utilizou-se o método de estimação chamado de Modelo de Espaço de Estados ou modelo de regressão linear dinâmico, comparando-o aos modelos de regressão simples e múltipla da estatística clássica. Os dados experimentais foram obtidos em um Latossolo Vermelho-Escuro pertencente ao Núcleo Experimental de Engenharia Agrícola da Universidade Estadual do Oeste do Paraná Campus de Cascavel, em uma área cultivada com trigo. Foram demarcadas 3 transeções com 97 pontos de amostragem espaçados de 3 m entre si. A abordagem de Espaço de Estados foi usada para avaliar a estimativa da produtividade do trigo na posição i, influenciada por medidas da produtividade do trigo, da densidade do solo, do grau de compactação do solo e da resistência do solo à penetração na posição i-1, em diferentes combinações entre as séries de dados dessas variáveis. Com a aplicação da abordagem de Espaço de Estados, todas as variáveis explicativas utilizadas apresentaram correlação significativa com a variável dependente: a resistência do solo à penetração foi o atributo com a melhor correlação, apresentando o coeficiente de ajuste R2 igual a 0,849. Os demais atributos tiveram os coeficientes R2 em torno de 0,800. Comparando-se com os modelos estáticos convencionais, o atributo resistência do solo à penetração teve o coeficiente de ajuste R2 igual a 0,102 e os demais atributos tiveram os seus coeficientes R2 abaixo de 0,087, na regressão convencional. Utilizando a metodologia de Espaço de Estados, as duas combinações que indicaram os melhores resultados foram a combinação entre produtividade do trigo e resistência do solo à penetração, que apresentou a melhor estimativa para produtividade do trigo, com coeficiente R2 igual a 0,849. A mesma combinação na regressão convencional resultou em R2 igual a 0,102. A segunda melhor combinação ocorreu entre os atributos: produtividade do trigo, grau de compactação do solo e resistência do solo à penetração, com R2 igual a 0,836, sendo que a mesma combinação na regressão clássica teve o coeficiente R2 igual a 0,217. Com isso é possível mostrar-se a vantagem da abordagem de Espaço de Estados em relação a outros métodos de estimativa e previsão para o relacionamento no sistema solo-planta. 2017-05-12T14:47:10Z 2007-12-10 2007-07-16 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis CORRÊA, Ademir Natal. State-space approach in the relationship among soil physical attributes and wheat yield. 2007. 121 f. Dissertação (Mestrado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2007. http://tede.unioeste.br:8080/tede/handle/tede/211 por info:eu-repo/semantics/openAccess application/pdf Universidade Estadual do Oeste do Parana Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola UNIOESTE BR Engenharia reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE instname:Universidade Estadual do Oeste do Paraná instacron:UNIOESTE