Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados

Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-02-21T23:45:28Z No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Approved for entry into archive by Paola...

Full description

Bibliographic Details
Main Author: Paris, Bruno Mendonça
Other Authors: Omar, Nizam
Format: Others
Language:Portuguese
Published: Universidade Presbiteriana Mackenzie 2018
Subjects:
Online Access:http://tede.mackenzie.br/jspui/handle/tede/3494
id ndltd-IBICT-oai-tede.mackenzie.br-tede-3494
record_format oai_dc
spelling ndltd-IBICT-oai-tede.mackenzie.br-tede-34942019-01-22T01:06:07Z Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados Paris, Bruno Mendonça Omar, Nizam Silva, Leandro Augusto da Fernandes, Clovis Torres recuperação de informação ranking learning to rank stacking CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-02-21T23:45:28Z No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-04-04T11:43:59Z (GMT) No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Made available in DSpace on 2018-04-04T11:43:59Z (GMT). No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-11-07 With the growth of the amount of information available in recent years, which will continue to grow due to the increase in users, devices and information shared over the internet, accessing the desired information should be done in a quick way so it is not spent too much time looking for what you want. A search in engines like Google, Yahoo, Bing is expected that the rst results bring the desired information. An area that aims to bring relevant documents to the user is known as Information Retrieval and can be aided by Learning to Rank algorithms, which applies machine learning to try to bring important documents to users in the best possible ordering. This work aims to verify a way to get an even better ordering of documents, using a technique of combining algorithms known as Stacking. To do so, it will used the RankLib tool, part of Lemur Project, developed in the Java language that contains several Learning to Rank algorithms, and the datasets from a base maintained by Microsoft Research Group known as LETOR. Com o crescimento da quantidade de informação disponível nos últimos anos, a qual irá continuar crescendo devido ao aumento de usuários, dispositivos e informações compartilhadas pela internet, acessar a informação desejada deve ser feita de uma maneira rápida afim de não se gastar muito tempo procurando o que se deseja. Uma busca em buscadores como Google, Yahoo, Bing espera-se que os primeiros resultados tragam a informação desejada. Uma área que tem o objetivo de trazer os documentos relevantes para o usuário é conhecida por Recuperação de Informação e pode ser auxiliada por algoritmos Learning to Rank, que aplica aprendizagem de máquina para tentar trazer os documentos importantes aos usuários na melhor ordenação possível. Esse trabalho visa verificar uma maneira de obter uma ordenação ainda melhor de documentos, empregando uma técnica de combinar algoritmos conhecida por Stacking. Para isso será utilizada a ferramenta RankLib, parte de um projeto conhecido por Lemur, desenvolvida na linguagem Java, que contém diversos algoritmos Learning to Rank, e o conjuntos de dados provenientes de uma base mantida pela Microsoft Research Group conhecida por LETOR. 2018-04-04T11:43:59Z 2017-11-07 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis PARIS, Bruno Mendonça. Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados. 2017. 69 f. Dissertação( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo. http://tede.mackenzie.br/jspui/handle/tede/3494 por http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess application/pdf Universidade Presbiteriana Mackenzie Engenharia Elétrica UPM Brasil Faculdade de Computação e Informática (FCI) reponame:Biblioteca Digital de Teses e Dissertações do Mackenzie instname:Universidade Presbiteriana Mackenzie instacron:MACKENZIE
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic recuperação de informação
ranking
learning to rank
stacking
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
spellingShingle recuperação de informação
ranking
learning to rank
stacking
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Paris, Bruno Mendonça
Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
description Submitted by Marta Toyoda (1144061@mackenzie.br) on 2018-02-21T23:45:28Z No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Approved for entry into archive by Paola Damato (repositorio@mackenzie.br) on 2018-04-04T11:43:59Z (GMT) No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === Made available in DSpace on 2018-04-04T11:43:59Z (GMT). No. of bitstreams: 2 Bruno Mendonça Paris.pdf: 2393892 bytes, checksum: 0cd807e0fd978642fc513bf059389c1f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-11-07 === With the growth of the amount of information available in recent years, which will continue to grow due to the increase in users, devices and information shared over the internet, accessing the desired information should be done in a quick way so it is not spent too much time looking for what you want. A search in engines like Google, Yahoo, Bing is expected that the rst results bring the desired information. An area that aims to bring relevant documents to the user is known as Information Retrieval and can be aided by Learning to Rank algorithms, which applies machine learning to try to bring important documents to users in the best possible ordering. This work aims to verify a way to get an even better ordering of documents, using a technique of combining algorithms known as Stacking. To do so, it will used the RankLib tool, part of Lemur Project, developed in the Java language that contains several Learning to Rank algorithms, and the datasets from a base maintained by Microsoft Research Group known as LETOR. === Com o crescimento da quantidade de informação disponível nos últimos anos, a qual irá continuar crescendo devido ao aumento de usuários, dispositivos e informações compartilhadas pela internet, acessar a informação desejada deve ser feita de uma maneira rápida afim de não se gastar muito tempo procurando o que se deseja. Uma busca em buscadores como Google, Yahoo, Bing espera-se que os primeiros resultados tragam a informação desejada. Uma área que tem o objetivo de trazer os documentos relevantes para o usuário é conhecida por Recuperação de Informação e pode ser auxiliada por algoritmos Learning to Rank, que aplica aprendizagem de máquina para tentar trazer os documentos importantes aos usuários na melhor ordenação possível. Esse trabalho visa verificar uma maneira de obter uma ordenação ainda melhor de documentos, empregando uma técnica de combinar algoritmos conhecida por Stacking. Para isso será utilizada a ferramenta RankLib, parte de um projeto conhecido por Lemur, desenvolvida na linguagem Java, que contém diversos algoritmos Learning to Rank, e o conjuntos de dados provenientes de uma base mantida pela Microsoft Research Group conhecida por LETOR.
author2 Omar, Nizam
author_facet Omar, Nizam
Paris, Bruno Mendonça
author Paris, Bruno Mendonça
author_sort Paris, Bruno Mendonça
title Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
title_short Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
title_full Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
title_fullStr Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
title_full_unstemmed Learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
title_sort learning to rank: combinação de algoritmos aplicando stacking e análise dos resultados
publisher Universidade Presbiteriana Mackenzie
publishDate 2018
url http://tede.mackenzie.br/jspui/handle/tede/3494
work_keys_str_mv AT parisbrunomendonca learningtorankcombinacaodealgoritmosaplicandostackingeanalisedosresultados
_version_ 1718930337919139840