Soluções clássicas para uma equação elíptica semilinear não homogênea

Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-29T13:33:49Z No. of bitstreams: 1 arquivo total.pdf: 5320246 bytes, checksum: 158dd460a20ce46c96d4a34623612264 (MD5) === Made available in DSpace on 2016-03-29T13:33:49Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 5320246 bytes, checksu...

Full description

Bibliographic Details
Main Author: Rocha, Suelen de Souza
Other Authors: Medeiros, Everaldo Souto de
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraíba 2016
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/8051
Description
Summary:Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-29T13:33:49Z No. of bitstreams: 1 arquivo total.pdf: 5320246 bytes, checksum: 158dd460a20ce46c96d4a34623612264 (MD5) === Made available in DSpace on 2016-03-29T13:33:49Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 5320246 bytes, checksum: 158dd460a20ce46c96d4a34623612264 (MD5) Previous issue date: 2011-08-25 === This work is mainly concerned with the existence and nonexistence of classical solution to the nonhomogeneous semilinear equation Δu + up + f(x) = 0 in Rn, u > 0 in Rn, when n 3, where f 0 is a Hölder continuous function. The nonexistence of classical solution is established when 1 < p n=(n 􀀀 2). For p > n=(n 􀀀 2) there may be both existence and nonexistence results depending on the asymptotic behavior of f at infinity. The existence results were obtained by employed sub and supersolutions techniques and fixed point theorem. For the nonexistence of classical solution we used a priori integral estimates obtained via averaging. === Neste trabalho, estamos interessados na existência e não existência de solução clássica para a equação não homogênea semilinear Δu + up + f(x) = 0 em Rn; u > 0 em Rn, n 3 onde f 0 é uma função Hölder contínua. A não existência de solução clássica é estabelecida quando 1 < p n=(n 􀀀 2). Para p > n=(n 􀀀 2), temos resultados de existência e não existência de solução clássica, dependendo do comportamento assin- tótico de f no infinito. Os resultados de existência foram obtidos usando o método de sub e supersolução e teoremas de ponto fixo. A não existência de solução clássica é obtida usando-se estimativas integrais a priori via média esférica.