Limites de escala em modelos de armadilhas

Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T13:00:07Z No. of bitstreams: 1 arquivo total.pdf: 809257 bytes, checksum: 7406ef37d18bbaf1d9cdd5649f5cff19 (MD5) === Made available in DSpace on 2016-03-28T13:00:07Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 809257 bytes, checksum:...

Full description

Bibliographic Details
Main Author: Santos, Lucas Araújo
Other Authors: Simas, Alexandre de Bustamante
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraíba 2016
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/8043
Description
Summary:Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-28T13:00:07Z No. of bitstreams: 1 arquivo total.pdf: 809257 bytes, checksum: 7406ef37d18bbaf1d9cdd5649f5cff19 (MD5) === Made available in DSpace on 2016-03-28T13:00:07Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 809257 bytes, checksum: 7406ef37d18bbaf1d9cdd5649f5cff19 (MD5) Previous issue date: 2015-12-11 === Let X = fX 0;X0 = 0g be a mean zero -stable random walk on Z with inhomogeneous jump rates f 􀀀1 i ; i 2 Zg, with 2 (1; 2] and f i : i 2 Zg is a family of independent random walk variables with common marginal distribution in the basis of attraction of an -stable law with 2 (0; 2]. In this paper we derive results about the long time behavior of this process, we obtain the scaling limit. To this end, rst we will approach probability on metric spaces, speci cally treat the D space of the functions that are right-continuous and have left-hand limits. We will also expose some results dealing with stable laws that are directly related to the above problem. === Seja X = fX 0;X0 = 0g um passeio aleat orio de m edia zero -est avel sobre Z com taxas de saltos n~ao homog^eneas f 􀀀1 i ; i 2 Zg, com 2 (1; 2] e f i : i 2 Zg uma fam lia de vari aveis aleat orias independentes com distribui c~ao marginal comum na bacia de atra c~ao de uma lei -est avel com 2 (0; 2]. Neste trabalho, obtemos resultados sobre o comportamento a longo prazo deste processo obtendo seu limite de escala. Para isso, faremos previamente um estudo sobre probabilidade em espa cos m etricos, mais especi camente sobre o espa co D das fun coes cont nuas a direita com limite a esquerda. Tamb em iremos expor alguns resultados que tratam de leis est aveis que est~ao relacionadas diretamente ao problema supracitado.