Sobre a Geometria de Imersões Riemannianas

Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-23T11:16:42Z No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5) === Made available in DSpace on 2016-03-23T11:16:43Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum:...

Full description

Bibliographic Details
Main Author: Santos, Fábio Reis dos Santos
Other Authors: Lima, Henrique Fernandes
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraíba 2016
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/8031
Description
Summary:Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-23T11:16:42Z No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5) === Made available in DSpace on 2016-03-23T11:16:43Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1343904 bytes, checksum: dfca90c2164204a1513fc4a55eca4527 (MD5) Previous issue date: 2015-05-26 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === Our purpose is to study the geometry of Riemannian immersions in certain semi- Riemannian manifolds. Initially, considering linearWeingarten hypersurfaces immersed in locally symmetric manifolds and, imposing suitable constraints on the scalar curvature, we guarantee that such a hypersurface is either totally umbilical or isometric to a isoparametric hypersurface with two distinct principal curvatures, one of them being simple. In higher codimension, we use a Simons type formula to obtain new characterizations of hyperbolic cylinders through the study of submanifolds having parallel normalized mean curvature vector field in a semi-Riemannian space form. Finally, we investigate the rigidity of complete spacelike hypersurfaces immersed in the steady state space via applications of some maximum principles. === Nos propomos estudar a geometria de imersões Riemannianas em certas variedades semi-Riemannianas. Inicialmente, consideramos hipersuperfícies Weingarten lineares imersas em variedades localmente simétricas e, impondo restrições apropriadas à curvatura escalar, garantimos que uma tal hipersuperfície é totalmente umbílica ou isométrica a uma hipersuperfície isoparamétrica com duas curvaturas principais distintas, sendo uma destas simples. Em codimensão alta, usamos uma fórmula do tipo Simons para obter novas caracterizações de cilindros hiperbólicos a partir do estudo de subvariedades com vetor curvatura média normalizado paralelo em uma forma espacial semi-Riemanniana. Finalmente, investigamos a rigidez de hipersuperfícies tipo-espaço completas imersas no steady state space via aplicações de alguns princípios do máximo.