Cálculo das retas numa superfície cúbica em P3

Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 610342 bytes, checksum: f21a218652f285a264f80225f01a6011 (MD5) Previous issue date: 2011-02-25 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === In this work we study cubic su...

Full description

Bibliographic Details
Main Author: Assis Junior, Geraldo de
Other Authors: Arancibia, Jacqueline Fabiola Rojas
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraí­ba 2015
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/7466
Description
Summary:Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 610342 bytes, checksum: f21a218652f285a264f80225f01a6011 (MD5) Previous issue date: 2011-02-25 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === In this work we study cubic surfaces in P3. More specically, we take care to count the number of lines on these surfaces. In chapter one we proved that the number of lines on a non-singular cubic surface in P3 is 27. In chapter two, as the motivation for chapter three, we focused in the classifcation of singularities of plane curves. For the singular case, discussed in chapter three, we used two algorithm to compute the number of lines. The first one consists in to divide the computation in six packages, which are actually the open set of the grassmannian G(2; 4), and in each open set we count the lines contained on the given surface. The second algorithm consists of dividing the lines on S in two packages: The package of lines passing through P and those lines that not passing through P but they are contained in a plane that contain some line passing through P, here P is an isolated singularity of the given surface. === Neste trabalho estudamos as superfícies cúbicas em P3. Mais precisamente, nos preocupamos em contabilizar o número de retas sobre estas superfícies. No capítulo um provamos o conhecido resultado que afirma que o número de retas sobre uma superfície cúbica não singular em P3 é 27. No capítulo dois, como motivação para o capítulo três, é abordada a classificação das singularidades de curvas planas. Para o caso singular, abordado no capítulo três, utilizamos dois algoritmos para contar as retas. O primeiro consiste em dividir as retas em seis pacotes, que na verdade são os abertos que cobrem a grassmanniana G(2; 4), e em cada pacote contamos as retas que estão sobre a superfície dada. O segundo algoritmo consiste em dividir as retas sobre S em dois pacotes: O pacote das retas que passam por P e o pacote das retas que não passam por P, sendo P uma singularidade isolada da superfície em questão.