Summary: | Made available in DSpace on 2015-05-15T11:46:23Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 490053 bytes, checksum: c9cf689fde66aed86d7eb372eeb05045 (MD5)
Previous issue date: 2009-05-15 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === Cook's local infuence approach based on normal curvature is an important diagnostic tool
for assessing local infuence of minor perturbations to a statistical model. However, no rigorous
approach has been developed to address two fundamental issues: the selection of an appropriate
perturbation and the development of infuence measures for objective functions at a point with a
nonzero
first derivative. The aim of this paper is to develop a diferential-geometrical framework of
a perturbation model (called the perturbation manifold) and utilize associated metric tensor and
affine curvatures to resolve these issues. We will show that the metric tensor of the perturbation
manifold provides important information about selecting an appropriate perturbation of a model. === Esta dissertação é dedicada ao estudo do sistema de Navier-Stokes sob ponto
de vista da teoria do controle. Primeiramente estudamos a controlabilidade das
aproximações de Galerkin do sistema de Navier-Stokes. Utilizando argumentos de
dualidade e de ponto fixo, mostramos que, com hipóteses adequadas sobre a base
de Galerkin, estas aproximações, finito dimensionais, são exatamente controláveis.
Passando ao modelo em dimensão infinita, analisamos a controlabilidade sobre trajetórias. Isto é feito usando uma desigualdade do tipo Calerman para o sistema de
Navier-Stokes linearizado e uma versão do teorema da função inversa. Dessa forma,
temos um resultado de controlabilidade local exata para o sistema de Navier-Stokes.
|