Uma Representação de Weierstrass para Superfícies Mínimas em H3 e H2 × R.

Made available in DSpace on 2015-05-15T11:45:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 323962 bytes, checksum: b1f72af0670744659eabe72c7c444dc3 (MD5) Previous issue date: 2008-08-08 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The Weierstrass representation of minima...

Full description

Bibliographic Details
Main Author: Roque, Alejandro Caicedo
Other Authors: Vera, Pedro Antonio Hinojosa
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraí­ba 2015
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/7353
Description
Summary:Made available in DSpace on 2015-05-15T11:45:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 323962 bytes, checksum: b1f72af0670744659eabe72c7c444dc3 (MD5) Previous issue date: 2008-08-08 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The Weierstrass representation of minimal surfaces in R3 and its generalization to Rn shows is a very useful tool in the study of minimal surfaces in these spaces. In this work we want to describe a type Weierstrass representation for immersions simply connected in the group of Heisenberg H3. Using applications harmonics is possible obtain a formula for general representation, type Weierstrass for minimal immersions in manifolds Riemannian simply connected general, is that, useful of point view theoretical, however it is very difficult find solutions explicit. The dimention 3 and the structure of group Lie of the group of Heisenberg H3 allow a description Geometric simple and we can get some classic examples. === A representação deWeierstrass para superfícies mínimas em R3 e sua generalização a Rn mostra-se uma ferramenta muito útil no estudo de superfícies mínimas nestes espaços. Neste trabalho pretendemos descrever uma representação tipo Weierstrass para imersões simplesmente conexas no grupo de Heisenberg H3. Usando aplicações harmónicas é possível obter uma fórmula de representação geral, tipo Weierstrass, para imersões mínimas simplesmente conexas em variedades Riemannianas gerais, isto é útil do ponto de vista teórico, entretanto é muito difícil encontrar soluções explicitas. A dimensão 3 e a estrutura de grupo de Lie do grupo de Heisenberg H3 permitem uma descrição geométrica simples e podemos obter alguns exemplos clássicos.