Segmentação de Imagens via Análise de Sensibilidade

Made available in DSpace on 2015-05-08T14:53:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1867949 bytes, checksum: e215bd83c33614620ee1baf3db08ebb4 (MD5) Previous issue date: 2012-04-03 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === Segmentation is the phase of...

Full description

Bibliographic Details
Main Author: Pereira, Roberta Ribeiro Guedes
Other Authors: Faria, Jairo Rocha de
Format: Others
Language:Portuguese
Published: Universidade Federal da Paraí­ba 2015
Subjects:
Online Access:http://tede.biblioteca.ufpb.br:8080/handle/tede/5265
Description
Summary:Made available in DSpace on 2015-05-08T14:53:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1867949 bytes, checksum: e215bd83c33614620ee1baf3db08ebb4 (MD5) Previous issue date: 2012-04-03 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES === Segmentation is the phase of the image processing where the input image is divided into constituent parts or objects. In general, the automatic segmentation is one of the most difficult tasks in digital image processing. In this work we used the topological sensitivity analysis as segmentation technique. The idea of segmentation of images via topological sensitivity analysis is to consider the class switching as an infinitesimal non-smooth perturbation of a pixel and calculate the sensitivity to this perturbation by a functional form associated with this disorder. In fact, the algorithms in the literature using the above approach are based on the Mumford-Shah functional whose minimum value is associated with the segmented image. The topological derivative is a scalar field that provides a first order approximation of the functional disorder associated with each pixel for each class of segmentation. Thus, in pixels where the topological derivative takes its most negative values ??will decrease the cost function and the corresponding change will result in better targeting than the previous. This work aims to present a comparative analysis of four segmentation algorithms based on topological derivative, three of them taken from the literature: Top-Shape 1, Shape 2 and Top-Sdt-Discrete, and the last top-Shape3, a new algorithm. The construction of the last algorithm is motivated by the analysis of the previous algorithms and limiting characteristics found, and derived results with higher quality and performance === A segmenta¸c ao ´e a fase do processamento de imagens onde a imagem de entrada ´e dividida em partes ou objetos constituintes. Em geral, a segmenta¸c ao autom´atica ´e uma das tarefas mais dif´ıceis no processamento de imagem digital . Neste trabalho ´e empregada a an´alise de sensibilidade topol´ogica como t´ecnica de segmenta¸c ao. A ideia da segmenta¸c ao de imagens via an´alise de sensibilidade topol´ogica ´e considerar a mudan¸ca de classe de um pixel como perturba¸c ao infinitesimal n ao suave e, calcular a sensibilidade a esta perturba¸c ao atrav´es de um funcional de forma associado a esta perturba¸c ao. De fato, os algoritmos encontrados na literatura que utilizam a abordagem acima s ao baseados no funcional de Mumford-Shah cujo valor m´ınimo est´a associado `a imagem segmentada. A derivada topol´ogica ´e um campo escalar que fornece uma aproxima¸c ao de primeira ordem do funcional associado a perturba¸c ao de cada pixel para cada uma das classes da segmenta¸c ao. Assim, nos pixels onde a derivada topol´ogica assume seus valores mais negativos a fun¸c ao custo ir´a diminuir e a mudan¸ca correspondente ir´a resultar numa segmenta¸c ao melhor do que a anterior. Este trabalho tem como objetivo apresentar uma an´alise comparativa entre quatro algoritmos de segmenta¸c ao baseados em derivada topol´ogica, sendo tr es deles extra´ıdos da literatura: Topo-Shape 1, Topo-Shape 2 e Sdt-Discrete , e o ´ultimo Topo-Shape3, novo algoritmo proposto. A constru¸c ao deste algoritmo ´e motivada pela an´alise dos algoritmos anteriores e caracter´ısticas limitantes encontradas, o que derivou resultados com maior qualidade e desempenho