Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq
Submitted by Maria Cristina (library@lncc.br) on 2016-08-02T16:44:43Z No. of bitstreams: 1 tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5) === Approved for entry into archive by Maria Cristina (library@lncc.br) on 2016-08-02T16:44:59Z (GMT) No. of bitstreams: 1 te...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Laboratório Nacional de Computação Científica
2016
|
Subjects: | |
Online Access: | https://tede.lncc.br/handle/tede/231 |
id |
ndltd-IBICT-oai-tede-server.lncc.br-tede-231 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Bioinformática Bioinformatics CNPQ::CIENCIAS BIOLOGICAS::BIOLOGIA GERAL CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO::MODELOS ANALITICOS E DE SIMULACAO |
spellingShingle |
Bioinformática Bioinformatics CNPQ::CIENCIAS BIOLOGICAS::BIOLOGIA GERAL CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO::MODELOS ANALITICOS E DE SIMULACAO Custódio, Márlon Grégori Flores Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq |
description |
Submitted by Maria Cristina (library@lncc.br) on 2016-08-02T16:44:43Z
No. of bitstreams: 1
tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5) === Approved for entry into archive by Maria Cristina (library@lncc.br) on 2016-08-02T16:44:59Z (GMT) No. of bitstreams: 1
tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5) === Made available in DSpace on 2016-08-02T16:45:11Z (GMT). No. of bitstreams: 1
tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5)
Previous issue date: 2015-04-28 === Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) === The indiscriminate use of antibiotics or their incorrect administration has made over the years, these drugs are losing their effectiveness due to evolutionary mechanisms, which naturally confer resistance characteristics to bacterias. As example of this evolutionary mechanism, we can mention the recent reports polymyxins resistant bacteria, drugs used as a last resort in infection control by super resistant bacteria, such as bacteria of the species Klebsiella pneumoniae microarray. The ease of this bacterium in performing transfers of genetic material, together with other mechanisms of their own group, is also making it resistant to polymyxins. This bacterial resistance points to a serious epidemiological problem, causing deaths including in Brazil. This study, aimed to infer the possible metabolic pathways and genes active in gene regulation mechanism related to resistance to polymyxin B in the genome of the bacteria K. pneumoniae KP13 strain, which had its entire genome unraveled in 2013. This opportunistic pathogenic microorganism He was responsible for hospital infection outbreak in 2009 in the south of the country. The findings of this study were made from the RNA-Seq technique, which is a transcriptome analysis technique based on the next generation sequencing (NGS), which allows a review of gene expression on a large scale. The transcriptome study, among others gives us an overview of the set of messengers transcripts (mRNAs) in a cell, and this allows us to directly evaluate the expression of its genes in specific situations. The transcriptome of the study was examined body 6 under conditions with two biological replicates for each condition. For sequencing were used two sequencing platforms: Illumina HiSeq and Roche 454 which enabled a comparative analysis of the data. From the obtained result of gene expression, the first stage of the study was the pre-processing of RNA-Seq data, where it was developed a methodology that was the basis for this analysis prokaryotic organism, given that the vast majority of materials available aims to study eukaryotic organisms. In the second stage of labor, the alignments were generated and the following was made to quantify the expression for each gene of the bacteria under study. The next step was to examine differential expression of genes important step towards the elucidation of resistance targets of regulation. All the differential expression of genes procedure was done using the R platform and the EDGE R package, the most suitable for the size of data that would be analyzed. The inference of genes active in gene regulation mechanism related to resistance to polymyxin B in the genome of the bacteria K. pneumoniae KP13 was made based on the clustering technique k-means, which showed to be effective within the universe of data to be mined. For the data generated, we were obtained $ 150 $ groups from the set 70 % genes most differentially expressed in all study conditions and, of these, the most significant associated with drug resistance and their metabolic pathways were chosen were investigated. Groupings proved concise and technical shows stable for application tests with other bodies. === O uso indiscriminado de antibióticos ou sua incorreta administração fez com que no passar dos anos, essas drogas fossem perdendo sua eficiência, devido aos mecanismos evolutivos, que naturalmente conferem caracteristicas de resistência às bacterias.Como exemplo desse mecanismo evolutivo, podemos citar os recentes relatos de bactérias resistentes às polimixinas, medicamentos utilizados como última alternativa no controle de infecções por bactérias super resistentes, como é o caso das bactérias da espécie Klebsiella pneumoniae. A facilidade dessa bactéria em realizar transferências de material genético, aliada a outros mecanismos próprios de seu grupo, vem tornando-a resistente também às polimixinas. Essa resistência bacteriana aponta para um problema epidemiológico grave, causador de óbitos inclusive no Brasil. O presente trabalho, teve por objetivo inferir os possíveis genes e vias metabólicas atuantes no mecanismo de regulação gênica relacionados à resistência à polimixina B no genoma da bactéria K. pneumoniae estirpe KP13, a qual teve seu genoma completo desvendado em 2013. Este microorganismo patogênico oportunista foi o responsável pelo surto de infecção hospitalar em 2009, no sul do pais. As análises do presente estudo foram feitas a partir da técnica de RNA-Seq, que é uma técnica de análise de transcriptomas baseada no sequenciamento de nova geração (NGS), que permite uma avaliação de expressão genica em grande escala. O estudo do transcriptoma, dentre outros nos dá uma visão geral do conjunto de transcritos mensageiros (mRNAs) em uma célula, e isso nos permite avaliar diretamente a expressão de seus genes sob situações específicas. O transcriptoma do organismo de estudo foi analisado sob 6 condições, com duas réplicas biológicas para cada condição. Para o sequenciamento foram usadas duas plataformas de sequenciamento: Illumina HiSeq e Roche 454 o que possibilitou uma análise comparativa dos dados. A partir do resultado obtido da expressão gênica, a primeira etapa do trabalho foi realizar o pré-processamento dos dados do RNA-Seq, onde foi desenvolvido uma metodologia que serviu como base para análise desse organismo procarioto, haja vista que a grande maioria dos materiais disponíveis visa estudo de organismos eucariotos. Na segunda etapa do trabalho, foram gerados os alinhamentos e a seguir foi feita a quantificação da expressão para cada gene da bactéria em estudo. O passo seguinte foi analisar a expressão diferencial dos genes, passo importante para a elucidação dos alvos de regulação da resistência. Todo o procedimento de expressão diferencial de genes foi feito utilizando a plataforma R, e o pacote EDGE R, o mais indicado para a dimensão de dados que viria a ser analisada. A inferência dos genes atuante no mecanismo de regulação gênica relacionados à resistência à polimixina B no genoma da bactéria K. pneumoniae KP13 foi feita baseando-se na técnica de agrupamento k-means, a qual apresentou-se efetiva dentro do universo de dados a ser minerado. Para os dados gerados, foram obtidos 150 agrupamentos a partir do conjunto de $70\%$ dos genes mais diferencialmente expressos em todas as condições do estudo, e, desses, foram escolhidos os mais significantes associados com a resistência bacteriana e suas vias metabólicas foram investigadas. Os agrupamentos mostraram-se concisos e a técnica mostra-se estável para aplicação de testes com outros organismos. |
author2 |
Nicolas, Marisa Fabiana |
author_facet |
Nicolas, Marisa Fabiana Custódio, Márlon Grégori Flores |
author |
Custódio, Márlon Grégori Flores |
author_sort |
Custódio, Márlon Grégori Flores |
title |
Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq |
title_short |
Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq |
title_full |
Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq |
title_fullStr |
Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq |
title_full_unstemmed |
Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq |
title_sort |
análise bioinformática do perfil de transcritos klebsiella pneumoniae através de dados de rna-seq |
publisher |
Laboratório Nacional de Computação Científica |
publishDate |
2016 |
url |
https://tede.lncc.br/handle/tede/231 |
work_keys_str_mv |
AT custodiomarlongregoriflores analisebioinformaticadoperfildetranscritosklebsiellapneumoniaeatravesdedadosdernaseq AT custodiomarlongregoriflores bioinformaticsanalysisoftheklebsielapneumoniaetranscriptsprofilebyrnaseqdata |
_version_ |
1718960277896036352 |
spelling |
ndltd-IBICT-oai-tede-server.lncc.br-tede-2312019-01-22T03:10:46Z Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq Bioinformatics analysis of the klebsiela pneumoniae transcripts profile by rna-seq data Custódio, Márlon Grégori Flores Nicolas, Marisa Fabiana Porto, Fábio André Machado Diniz, Claúdio Galuppo Bioinformática Bioinformatics CNPQ::CIENCIAS BIOLOGICAS::BIOLOGIA GERAL CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::MATEMATICA DA COMPUTACAO::MODELOS ANALITICOS E DE SIMULACAO Submitted by Maria Cristina (library@lncc.br) on 2016-08-02T16:44:43Z No. of bitstreams: 1 tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5) Approved for entry into archive by Maria Cristina (library@lncc.br) on 2016-08-02T16:44:59Z (GMT) No. of bitstreams: 1 tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5) Made available in DSpace on 2016-08-02T16:45:11Z (GMT). No. of bitstreams: 1 tese Marlon.pdf: 3479616 bytes, checksum: f60059a6220c6ab4e97a28df4efe523a (MD5) Previous issue date: 2015-04-28 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) The indiscriminate use of antibiotics or their incorrect administration has made over the years, these drugs are losing their effectiveness due to evolutionary mechanisms, which naturally confer resistance characteristics to bacterias. As example of this evolutionary mechanism, we can mention the recent reports polymyxins resistant bacteria, drugs used as a last resort in infection control by super resistant bacteria, such as bacteria of the species Klebsiella pneumoniae microarray. The ease of this bacterium in performing transfers of genetic material, together with other mechanisms of their own group, is also making it resistant to polymyxins. This bacterial resistance points to a serious epidemiological problem, causing deaths including in Brazil. This study, aimed to infer the possible metabolic pathways and genes active in gene regulation mechanism related to resistance to polymyxin B in the genome of the bacteria K. pneumoniae KP13 strain, which had its entire genome unraveled in 2013. This opportunistic pathogenic microorganism He was responsible for hospital infection outbreak in 2009 in the south of the country. The findings of this study were made from the RNA-Seq technique, which is a transcriptome analysis technique based on the next generation sequencing (NGS), which allows a review of gene expression on a large scale. The transcriptome study, among others gives us an overview of the set of messengers transcripts (mRNAs) in a cell, and this allows us to directly evaluate the expression of its genes in specific situations. The transcriptome of the study was examined body 6 under conditions with two biological replicates for each condition. For sequencing were used two sequencing platforms: Illumina HiSeq and Roche 454 which enabled a comparative analysis of the data. From the obtained result of gene expression, the first stage of the study was the pre-processing of RNA-Seq data, where it was developed a methodology that was the basis for this analysis prokaryotic organism, given that the vast majority of materials available aims to study eukaryotic organisms. In the second stage of labor, the alignments were generated and the following was made to quantify the expression for each gene of the bacteria under study. The next step was to examine differential expression of genes important step towards the elucidation of resistance targets of regulation. All the differential expression of genes procedure was done using the R platform and the EDGE R package, the most suitable for the size of data that would be analyzed. The inference of genes active in gene regulation mechanism related to resistance to polymyxin B in the genome of the bacteria K. pneumoniae KP13 was made based on the clustering technique k-means, which showed to be effective within the universe of data to be mined. For the data generated, we were obtained $ 150 $ groups from the set 70 % genes most differentially expressed in all study conditions and, of these, the most significant associated with drug resistance and their metabolic pathways were chosen were investigated. Groupings proved concise and technical shows stable for application tests with other bodies. O uso indiscriminado de antibióticos ou sua incorreta administração fez com que no passar dos anos, essas drogas fossem perdendo sua eficiência, devido aos mecanismos evolutivos, que naturalmente conferem caracteristicas de resistência às bacterias.Como exemplo desse mecanismo evolutivo, podemos citar os recentes relatos de bactérias resistentes às polimixinas, medicamentos utilizados como última alternativa no controle de infecções por bactérias super resistentes, como é o caso das bactérias da espécie Klebsiella pneumoniae. A facilidade dessa bactéria em realizar transferências de material genético, aliada a outros mecanismos próprios de seu grupo, vem tornando-a resistente também às polimixinas. Essa resistência bacteriana aponta para um problema epidemiológico grave, causador de óbitos inclusive no Brasil. O presente trabalho, teve por objetivo inferir os possíveis genes e vias metabólicas atuantes no mecanismo de regulação gênica relacionados à resistência à polimixina B no genoma da bactéria K. pneumoniae estirpe KP13, a qual teve seu genoma completo desvendado em 2013. Este microorganismo patogênico oportunista foi o responsável pelo surto de infecção hospitalar em 2009, no sul do pais. As análises do presente estudo foram feitas a partir da técnica de RNA-Seq, que é uma técnica de análise de transcriptomas baseada no sequenciamento de nova geração (NGS), que permite uma avaliação de expressão genica em grande escala. O estudo do transcriptoma, dentre outros nos dá uma visão geral do conjunto de transcritos mensageiros (mRNAs) em uma célula, e isso nos permite avaliar diretamente a expressão de seus genes sob situações específicas. O transcriptoma do organismo de estudo foi analisado sob 6 condições, com duas réplicas biológicas para cada condição. Para o sequenciamento foram usadas duas plataformas de sequenciamento: Illumina HiSeq e Roche 454 o que possibilitou uma análise comparativa dos dados. A partir do resultado obtido da expressão gênica, a primeira etapa do trabalho foi realizar o pré-processamento dos dados do RNA-Seq, onde foi desenvolvido uma metodologia que serviu como base para análise desse organismo procarioto, haja vista que a grande maioria dos materiais disponíveis visa estudo de organismos eucariotos. Na segunda etapa do trabalho, foram gerados os alinhamentos e a seguir foi feita a quantificação da expressão para cada gene da bactéria em estudo. O passo seguinte foi analisar a expressão diferencial dos genes, passo importante para a elucidação dos alvos de regulação da resistência. Todo o procedimento de expressão diferencial de genes foi feito utilizando a plataforma R, e o pacote EDGE R, o mais indicado para a dimensão de dados que viria a ser analisada. A inferência dos genes atuante no mecanismo de regulação gênica relacionados à resistência à polimixina B no genoma da bactéria K. pneumoniae KP13 foi feita baseando-se na técnica de agrupamento k-means, a qual apresentou-se efetiva dentro do universo de dados a ser minerado. Para os dados gerados, foram obtidos 150 agrupamentos a partir do conjunto de $70\%$ dos genes mais diferencialmente expressos em todas as condições do estudo, e, desses, foram escolhidos os mais significantes associados com a resistência bacteriana e suas vias metabólicas foram investigadas. Os agrupamentos mostraram-se concisos e a técnica mostra-se estável para aplicação de testes com outros organismos. 2016-08-02T16:45:11Z 2015-04-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis Análise bioinformática do perfil de transcritos Klebsiella pneumoniae através de dados de rna-seq, 2015, xix,121p., Dissertação, Programa de Pós-Graduação de Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, RJ, 2015. https://tede.lncc.br/handle/tede/231 por info:eu-repo/semantics/openAccess application/pdf Laboratório Nacional de Computação Científica Programa de Pós-Graduação em Modelagem Computacional LNCC Brasil Serviço de Análise e Apoio a Formação de Recursos Humanos reponame:Biblioteca Digital de Teses e Dissertações do LNCC instname:Laboratório Nacional de Computação Científica instacron:LNCC |