Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico
CAPES === Este trabalho propõe uma modificação da meta-heurística Busca Harmônica (HS) a partir de uma nova abordagem baseada em população, empregando, também, algumas estratégias inspiradas em outras meta-heurísticas. Este novo modelo foi implementado utilizando a arquitetura de programação paralel...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade Tecnológica Federal do Paraná
2012
|
Subjects: | |
Online Access: | http://repositorio.utfpr.edu.br/jspui/handle/1/308 |
id |
ndltd-IBICT-oai-repositorio.utfpr.edu.br-1-308 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Análise harmônica Heurística Algorítmos Otimização combinatória Computação gráfica Arquitetura de computador Programação paralela (Computação) Harmonic analysis Heuristic Algorithms Combinatorial optimization Computer graphics Computer architecture Parallel programming (Computer science) |
spellingShingle |
Análise harmônica Heurística Algorítmos Otimização combinatória Computação gráfica Arquitetura de computador Programação paralela (Computação) Harmonic analysis Heuristic Algorithms Combinatorial optimization Computer graphics Computer architecture Parallel programming (Computer science) Scalabrin, Marlon Henrique Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
description |
CAPES === Este trabalho propõe uma modificação da meta-heurística Busca Harmônica (HS) a partir de uma nova abordagem baseada em população, empregando, também, algumas estratégias inspiradas em outras meta-heurísticas. Este novo modelo foi implementado utilizando a arquitetura de programação paralela CUDA em uma GPU. O uso de placas de processamento gráficas (GPU) para processamento de propósito geral está crescendo, e estas têm sido utilizadas por muitos pesquisadores para processamento científico. Seu uso se mostra interessante para meta-heurísticas populacionais, podendo realizar muitas operações simultaneamente. A HS é uma meta-heurística inspirada no objetivo de um músico em buscar uma harmonia perfeita. modelo proposto incluiu-se uma população de harmonias temporárias que são geradas a cada nova iteração, permitindo a realização simultânea de diversas avaliações de função. Assim aumenta-se o grau de paralelismo da HS, possibilitando maiores ganhos de velocidade com o uso de arquiteturas paralelas. O novo modelo proposto executado em GPU foi denominado Mega Harmony Search (MHS). Na implementação em GPU cada passo do algoritmo é tratado individualmente em forma de kernels com configurações particulares para cada um. Para demonstrar a eficácia do modelo proposto foram selecionados alguns problemas de benchmark, como a otimização de estruturas de proteínas, a otimização de treliças e problemas matemáticos. Através de experimentos fatoriais foi identificado um conjunto de parâmetros padrão, o qual foi utilizado nos outros experimentos. As análises realizadas sobre resultados experimentais mostram que o MHS apresentou solução de qualidade equivalente à HS e ganhos de velocidade, com a sua execução em GPU, superiores a 60x quando comparado a implementação em CPU. Em trabalhos futuros poderão ser estudadas novas modificações ao algoritmo, como a implementação de nichos e estudos de estratégias de interação entre eles. === This work propose a new approach for the metaheuristic Harmonic Search (HS), by using a population of solutiona and other strategies inspired in another metaheuristics. This new model was implemented using a parallel architecture of a graphical processing unity (GPU). The use of GPU for general-purpose processing is growing, specially for scientific processing. Its use is particularly interesting for populational metaheuristics, where multiple operations are executed simultaneously. The HS is a metaheuristic inspired by the way jazz musicians search for a perfect harmony. In the proposed model a population of temporary harmonies was included. Such population was generated at each iteration, enabling simultaneous evaluation of the objective function being optimized, and thus, increasing the level of parallelism of HS. The new approach implemented in GPU was named Mega Harmony Search (MHS), and each step of the algorithm is handled in the form of kernels with particular configurations for each one. To show the efficiency of MHS some benchmark problems were selected for testing, including mathematical optimization problems, protein structure prediction, and truss structure optimization. Factorial experiments were done so as to find the best set of parameters for the MHS. The analyzes carried out on the experimental results show that the solutions provided by MHS have comparable quality to those of the simple Harmony Search. However, by using GPU, MHS achieved a speedup of 60x, compared with the implementation in regular CPU. Future work will focus other improvements in the algorithm, such as the use of niches and species, as well a study of the interactions between them. |
author2 |
Lopes, Heitor Silvério |
author_facet |
Lopes, Heitor Silvério Scalabrin, Marlon Henrique |
author |
Scalabrin, Marlon Henrique |
author_sort |
Scalabrin, Marlon Henrique |
title |
Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
title_short |
Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
title_full |
Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
title_fullStr |
Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
title_full_unstemmed |
Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
title_sort |
mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico |
publisher |
Universidade Tecnológica Federal do Paraná |
publishDate |
2012 |
url |
http://repositorio.utfpr.edu.br/jspui/handle/1/308 |
work_keys_str_mv |
AT scalabrinmarlonhenrique megabuscaharmonicaalgoritmodebuscaharmonicabaseadoempopulacaoeimplementadoemunidadesdeprocessamentografico |
_version_ |
1718680688992976896 |
spelling |
ndltd-IBICT-oai-repositorio.utfpr.edu.br-1-3082018-05-28T04:39:37Z Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico Scalabrin, Marlon Henrique Lopes, Heitor Silvério Análise harmônica Heurística Algorítmos Otimização combinatória Computação gráfica Arquitetura de computador Programação paralela (Computação) Harmonic analysis Heuristic Algorithms Combinatorial optimization Computer graphics Computer architecture Parallel programming (Computer science) CAPES Este trabalho propõe uma modificação da meta-heurística Busca Harmônica (HS) a partir de uma nova abordagem baseada em população, empregando, também, algumas estratégias inspiradas em outras meta-heurísticas. Este novo modelo foi implementado utilizando a arquitetura de programação paralela CUDA em uma GPU. O uso de placas de processamento gráficas (GPU) para processamento de propósito geral está crescendo, e estas têm sido utilizadas por muitos pesquisadores para processamento científico. Seu uso se mostra interessante para meta-heurísticas populacionais, podendo realizar muitas operações simultaneamente. A HS é uma meta-heurística inspirada no objetivo de um músico em buscar uma harmonia perfeita. modelo proposto incluiu-se uma população de harmonias temporárias que são geradas a cada nova iteração, permitindo a realização simultânea de diversas avaliações de função. Assim aumenta-se o grau de paralelismo da HS, possibilitando maiores ganhos de velocidade com o uso de arquiteturas paralelas. O novo modelo proposto executado em GPU foi denominado Mega Harmony Search (MHS). Na implementação em GPU cada passo do algoritmo é tratado individualmente em forma de kernels com configurações particulares para cada um. Para demonstrar a eficácia do modelo proposto foram selecionados alguns problemas de benchmark, como a otimização de estruturas de proteínas, a otimização de treliças e problemas matemáticos. Através de experimentos fatoriais foi identificado um conjunto de parâmetros padrão, o qual foi utilizado nos outros experimentos. As análises realizadas sobre resultados experimentais mostram que o MHS apresentou solução de qualidade equivalente à HS e ganhos de velocidade, com a sua execução em GPU, superiores a 60x quando comparado a implementação em CPU. Em trabalhos futuros poderão ser estudadas novas modificações ao algoritmo, como a implementação de nichos e estudos de estratégias de interação entre eles. This work propose a new approach for the metaheuristic Harmonic Search (HS), by using a population of solutiona and other strategies inspired in another metaheuristics. This new model was implemented using a parallel architecture of a graphical processing unity (GPU). The use of GPU for general-purpose processing is growing, specially for scientific processing. Its use is particularly interesting for populational metaheuristics, where multiple operations are executed simultaneously. The HS is a metaheuristic inspired by the way jazz musicians search for a perfect harmony. In the proposed model a population of temporary harmonies was included. Such population was generated at each iteration, enabling simultaneous evaluation of the objective function being optimized, and thus, increasing the level of parallelism of HS. The new approach implemented in GPU was named Mega Harmony Search (MHS), and each step of the algorithm is handled in the form of kernels with particular configurations for each one. To show the efficiency of MHS some benchmark problems were selected for testing, including mathematical optimization problems, protein structure prediction, and truss structure optimization. Factorial experiments were done so as to find the best set of parameters for the MHS. The analyzes carried out on the experimental results show that the solutions provided by MHS have comparable quality to those of the simple Harmony Search. However, by using GPU, MHS achieved a speedup of 60x, compared with the implementation in regular CPU. Future work will focus other improvements in the algorithm, such as the use of niches and species, as well a study of the interactions between them. 2012-10-16T18:58:04Z 2012-10-16T18:58:04Z 2012-03-31 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis SCALABRIN, Marlon Henrique. Mega busca harmônica: algoritmo de busca harmônica baseado em população e implementado em unidades de processamento gráfico. 2012. 132 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) – Universidade Tecnológica Federal do Paraná, Curitiba, 2012. http://repositorio.utfpr.edu.br/jspui/handle/1/308 por info:eu-repo/semantics/openAccess Universidade Tecnológica Federal do Paraná Curitiba Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial reponame:Repositório Institucional da UTFPR instname:Universidade Tecnológica Federal do Paraná instacron:UTFPR |