Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados

A previsibilidade de indicadores de qualidade de vida pode contribuir na projeção de variáveis dependentes, auxiliar em tomadas de decisões para sustentar ou não políticas públicas e justificar o cenário vivido pelos países e o mundo. Objetivo: Prever o Índice de Desenvolvimento Humano (IDH) e a exp...

Full description

Bibliographic Details
Main Author: Santos, Celso Bilynkievycz dos
Other Authors: Pilatti, Luiz Alberto
Language:Portuguese
Published: Universidade Tecnológica Federal do Paraná 2017
Subjects:
Online Access:http://repositorio.utfpr.edu.br/jspui/handle/1/2325
id ndltd-IBICT-oai-repositorio.utfpr.edu.br-1-2325
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
Indicadores sociais
Desenvolvimento social
Qualidade de vida - América Latina
Mineração de dados (Computação)
Social indicators
Progress
Quality of life - Latin America
Data mining
Engenharia de Produção
spellingShingle CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
Indicadores sociais
Desenvolvimento social
Qualidade de vida - América Latina
Mineração de dados (Computação)
Social indicators
Progress
Quality of life - Latin America
Data mining
Engenharia de Produção
Santos, Celso Bilynkievycz dos
Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
description A previsibilidade de indicadores de qualidade de vida pode contribuir na projeção de variáveis dependentes, auxiliar em tomadas de decisões para sustentar ou não políticas públicas e justificar o cenário vivido pelos países e o mundo. Objetivo: Prever o Índice de Desenvolvimento Humano (IDH) e a expectativa de vida (EV) nos países latino-americanos no período de 2015 a 2020, utilizando técnicas de Mineração de Dados. Metodologia: Foram percorridas as etapas do processo Descoberta de Conhecimento em Base Dados (DCBD). Durante a etapa de DCBD de Mineração de Dados, foi avaliado o desempenho de diferentes algoritmos com paradigma de aprendizado baseados em funções. A partir do algoritmo com melhor desempenho, foram desenvolvidos 748 modelos de previsão univariados e dois multivariados para previsão do IDH de 187 países do mundo e seus resultados, comparados com os últimos relatórios do United Nations Development Programme (UNDP), para definição do modelo mais eficiente. Os resultados desses testes de previsões ainda foram comparados com 44 modelos univariados Autoregressive Integrated Moving Average (ARIMA). A partir da definição do melhor algoritmo de Mineração de Dados e modelo, fez-se a previsão do IDH e da EV para os países da America Latina para o período de 2015 a 2020. Resultados: O algoritmo SMOReg e os modelos multivariados apresentaram melhor desempenho nos testes desenvolvidos durante o experimento. As médias de crescimento do IDH e EV previstas para os países latino-americanos tendem a aumentar no período analisado, respectivamente, 4,99±3,90 % e 2,47±0,09 anos. Conclusão: Experiências multivariadas possibilitam maior aprendizagem dos algoritmos, aumentando sua precisão. As técnicas de Mineração de Dados apresentaram melhor qualidade nas previsões em relação à técnica mais popular, ARIMA. As previsões sugerem média de crescimento do IDH e EV dos países latino-americanos maiores que a média mundial. === The predictability of quality of life indicators can contribute to the projection of dependent variables, help decision-making processes to support public policies and justify the scenario experienced by the countries and the world. Aim: This study aimed to predict the Human Development Index (HDI) and life expectancy (LE) in Latin American countries in the period of 2015–2020 using data mining techniques. Methodology: The study followed the steps of Knowledge Discovery in Database (KDD) processes. During the data mining KDD step, the performance of different algorithms with function-based learning paradigms was analyzed. From the algorithm with the best performance, 748 prediction models of univariate and two multivariate were developed to predict the HDI of 187 countries and their results were compared with the last reports from the United Nations Development Program (UNDP) in order to define the most efficient model. The results of these prediction tests were compared with 44 univariate Autoregressive Integrated Moving Average (ARIMA) models. From the definition of the best algorithm of data mining and model, the prediction of HDI and LE for Latin American countries from 2015 and 2020 was done. Results: The SMOReg algorithm and the multivariate models presented the best performance in the tests during the experiment. The average growth in HDI and LE predicted for Latin American countries tend to increase in the period analyzed, 4.99±3.90 % and 2.47±0.09 years, respectively. Conclusion: Multivariate experiences allow better learning of algorithms, increasing their prediction. Mining data techniques present better quality in the predictions compared to Autoregressive Integrated Moving Average (ARIMA), which is the most popular technique. The predictions suggest an average growth in HDI and LE in Latin American countries compared to the world average.
author2 Pilatti, Luiz Alberto
author_facet Pilatti, Luiz Alberto
Santos, Celso Bilynkievycz dos
author Santos, Celso Bilynkievycz dos
author_sort Santos, Celso Bilynkievycz dos
title Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
title_short Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
title_full Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
title_fullStr Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
title_full_unstemmed Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados
title_sort previsão do índice de desenvolvimento humano e da expectativa de vida na américa latina por meio de técnicas de mineração de dados
publisher Universidade Tecnológica Federal do Paraná
publishDate 2017
url http://repositorio.utfpr.edu.br/jspui/handle/1/2325
work_keys_str_mv AT santoscelsobilynkievyczdos previsaodoindicededesenvolvimentohumanoedaexpectativadevidanaamericalatinapormeiodetecnicasdemineracaodedados
AT santoscelsobilynkievyczdos predictionofthehumandevelopmentindexandlifeexpectancyinlatinamericanusingdataminingtechniques
_version_ 1718680628122091520
spelling ndltd-IBICT-oai-repositorio.utfpr.edu.br-1-23252018-05-28T04:39:42Z Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados Prediction of the human development index and life expectancy in Latin American using data mining techniques Santos, Celso Bilynkievycz dos Pilatti, Luiz Alberto Pedroso, Bruno Guimarães, Alaine Margarete Carvalho, Deborah Ribeiro Xavier, Antonio Augusto de Paula Ishikawa, Gerson CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO Indicadores sociais Desenvolvimento social Qualidade de vida - América Latina Mineração de dados (Computação) Social indicators Progress Quality of life - Latin America Data mining Engenharia de Produção A previsibilidade de indicadores de qualidade de vida pode contribuir na projeção de variáveis dependentes, auxiliar em tomadas de decisões para sustentar ou não políticas públicas e justificar o cenário vivido pelos países e o mundo. Objetivo: Prever o Índice de Desenvolvimento Humano (IDH) e a expectativa de vida (EV) nos países latino-americanos no período de 2015 a 2020, utilizando técnicas de Mineração de Dados. Metodologia: Foram percorridas as etapas do processo Descoberta de Conhecimento em Base Dados (DCBD). Durante a etapa de DCBD de Mineração de Dados, foi avaliado o desempenho de diferentes algoritmos com paradigma de aprendizado baseados em funções. A partir do algoritmo com melhor desempenho, foram desenvolvidos 748 modelos de previsão univariados e dois multivariados para previsão do IDH de 187 países do mundo e seus resultados, comparados com os últimos relatórios do United Nations Development Programme (UNDP), para definição do modelo mais eficiente. Os resultados desses testes de previsões ainda foram comparados com 44 modelos univariados Autoregressive Integrated Moving Average (ARIMA). A partir da definição do melhor algoritmo de Mineração de Dados e modelo, fez-se a previsão do IDH e da EV para os países da America Latina para o período de 2015 a 2020. Resultados: O algoritmo SMOReg e os modelos multivariados apresentaram melhor desempenho nos testes desenvolvidos durante o experimento. As médias de crescimento do IDH e EV previstas para os países latino-americanos tendem a aumentar no período analisado, respectivamente, 4,99±3,90 % e 2,47±0,09 anos. Conclusão: Experiências multivariadas possibilitam maior aprendizagem dos algoritmos, aumentando sua precisão. As técnicas de Mineração de Dados apresentaram melhor qualidade nas previsões em relação à técnica mais popular, ARIMA. As previsões sugerem média de crescimento do IDH e EV dos países latino-americanos maiores que a média mundial. The predictability of quality of life indicators can contribute to the projection of dependent variables, help decision-making processes to support public policies and justify the scenario experienced by the countries and the world. Aim: This study aimed to predict the Human Development Index (HDI) and life expectancy (LE) in Latin American countries in the period of 2015–2020 using data mining techniques. Methodology: The study followed the steps of Knowledge Discovery in Database (KDD) processes. During the data mining KDD step, the performance of different algorithms with function-based learning paradigms was analyzed. From the algorithm with the best performance, 748 prediction models of univariate and two multivariate were developed to predict the HDI of 187 countries and their results were compared with the last reports from the United Nations Development Program (UNDP) in order to define the most efficient model. The results of these prediction tests were compared with 44 univariate Autoregressive Integrated Moving Average (ARIMA) models. From the definition of the best algorithm of data mining and model, the prediction of HDI and LE for Latin American countries from 2015 and 2020 was done. Results: The SMOReg algorithm and the multivariate models presented the best performance in the tests during the experiment. The average growth in HDI and LE predicted for Latin American countries tend to increase in the period analyzed, 4.99±3.90 % and 2.47±0.09 years, respectively. Conclusion: Multivariate experiences allow better learning of algorithms, increasing their prediction. Mining data techniques present better quality in the predictions compared to Autoregressive Integrated Moving Average (ARIMA), which is the most popular technique. The predictions suggest an average growth in HDI and LE in Latin American countries compared to the world average. 2017-08-22T22:50:02Z 2017-08-22T22:50:02Z 2016-12-22 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis SANTOS, Celso Bilynkievycz dos. Previsão do índice de desenvolvimento humano e da expectativa de vida na América Latina por meio de técnicas de mineração de dados. 2016. 216 f. Tese (Doutorado em Engenharia de Produção) - Universidade Tecnológica Federal do Paraná. Ponta Grossa, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2325 por info:eu-repo/semantics/openAccess Universidade Tecnológica Federal do Paraná Ponta Grossa Programa de Pós-Graduação em Engenharia de Produção UTFPR Brasil reponame:Repositório Institucional da UTFPR instname:Universidade Tecnológica Federal do Paraná instacron:UTFPR