O problema da designação e sua variante parametrica
Orientador: João Carlos Setubal === Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação === Made available in DSpace on 2018-07-26T12:21:55Z (GMT). No. of bitstreams: 1 AbreuJunior_LidioNunesde_M.pdf: 9384178 bytes, checksum: ab1f02d1d27d732c311ae88caa13f5d9 (MD5) P...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
[s.n.]
2000
|
Subjects: | |
Online Access: | ABREU JUNIOR, Lidio Nunes de. O problema da designação e sua variante parametrica. 2000. 96p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/275895>. Acesso em: 26 jul. 2018. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275895 |
id |
ndltd-IBICT-oai-repositorio.unicamp.br-REPOSIP-275895 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Otimização combinatória |
spellingShingle |
Otimização combinatória Abreu Junior, Lidio Nunes de O problema da designação e sua variante parametrica |
description |
Orientador: João Carlos Setubal === Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação === Made available in DSpace on 2018-07-26T12:21:55Z (GMT). No. of bitstreams: 1
AbreuJunior_LidioNunesde_M.pdf: 9384178 bytes, checksum: ab1f02d1d27d732c311ae88caa13f5d9 (MD5)
Previous issue date: 2000 === Resumo: O assunto principal desta tese é o problema da designação: dado um grafo bipartido com custos nas arestas, obter um emparelhamento perfeito de custo mínimo. Na primeira parte do trabalho apresentamos uma revisão detalhada dos conceitos e principais resultados da literatura sobre esse problema. Na segunda parte, discutimos uma variante paramétrica, na qual cada aresta e tem seu custo dado por uma expressão do tipo ce° + ?ce?, onde ce° e ce? são constantes e ? é o parâmetro, cujo valor é real e varia. Nesta variante o objetivo é obter todas as soluções do problema para um intervalo de valores de A no menor tempo possível. Nesta parte inicialmente fazemos uma revisão de resultados da literatura que apresentam técnicas gerais para a resolução de problemas paramétricos em Otimização Combinatória. Em seguida apresentamos uma abordagem, também da literatura, específica para o problema do fluxo de custo mínimo, do qual o problema da designação é um caso especial. Esta abordagem se baseia em propriedades do algoritmo simplex de rede. Em seguida apresentamos uma nova abordagem, baseada numa relação entre o problema do fluxo de custo mínimo e o problema do ciclo de razão mínima. A complexidade desta nova abordagem é insatisfatória quando se quer resolver uma instância do problema da designação paramétrico, pois a complexidade conhecida do problema do ciclo de razão mínima é maior do que a complexidade conhecida do problema da designação. Esta nova abordagem entretanto é satisfatória do ponto de vista teórico quando aplicada ao problema do fluxo de custo mínimo paramétrico. O trabalho finaliza apresentando uma comparação experimental entre as abordagens "simplex de rede" e "ciclo de razão mínima" para o problema do fluxo mínimo paramétrico, mostrando que a primeira é muito superior à segunda. === Abstract: This dissertation is about the Assignment Problem: given an edge-weighted bipartite graph, find a perfect matching of minimum weight. In the first part of this work we present a detailed survey of the literature on this problem, including basic concepts and main results. In the second part, we discuss a parametric variant of this problem. In this variant, the weight of each edge e is given tipo ce° + ?ce?, where ce° e ce? are constants and ? is the parameter, that is, a real value that can vary. For a given range of A values we want to find all solutions to the corresponding assignment problems in the least possible time. In this part of the work we initially present a survey of techniques for solving general Combinatorial Optimization parametric problems. We then present a technique, also from the literature, for solving the parametric minimum cost flow problem, of which the assignment problem is a special case. This technique is based on the network simplex algorithm. We then present a new technique, also for solving the parametric minumum cost flow problem, based on a reduction to the minimum cost-to-time ratio cycle problem. This technique is not satisfactory for solving parametric assignment problems, because the best known algorithm for the minimum cost-to-time ratio cycle problem has worst running time than the best algorithm known for the assignment problem. It is however satisfactory from a theoretical point of view when applied to parametric minimum cost flow problems, because its running time is better than the best known running time for a certain class of inputs. We made an experimental comparison between the "network simplex" approach and the "minimum ratio cycle approach", but found that in all cases the "network simplex" approach has faster running times. === Mestrado === Mestre em Ciência da Computação |
author2 |
UNIVERSIDADE ESTADUAL DE CAMPINAS |
author_facet |
UNIVERSIDADE ESTADUAL DE CAMPINAS Abreu Junior, Lidio Nunes de |
author |
Abreu Junior, Lidio Nunes de |
author_sort |
Abreu Junior, Lidio Nunes de |
title |
O problema da designação e sua variante parametrica |
title_short |
O problema da designação e sua variante parametrica |
title_full |
O problema da designação e sua variante parametrica |
title_fullStr |
O problema da designação e sua variante parametrica |
title_full_unstemmed |
O problema da designação e sua variante parametrica |
title_sort |
o problema da designação e sua variante parametrica |
publisher |
[s.n.] |
publishDate |
2000 |
url |
ABREU JUNIOR, Lidio Nunes de. O problema da designação e sua variante parametrica. 2000. 96p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/275895>. Acesso em: 26 jul. 2018. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275895 |
work_keys_str_mv |
AT abreujuniorlidionunesde oproblemadadesignacaoesuavarianteparametrica |
_version_ |
1718874384997810176 |
spelling |
ndltd-IBICT-oai-repositorio.unicamp.br-REPOSIP-2758952019-01-21T20:32:48Z O problema da designação e sua variante parametrica Abreu Junior, Lidio Nunes de UNIVERSIDADE ESTADUAL DE CAMPINAS Setubal, João Carlos, 1957- Souza, Cid Carvalho de Otimização combinatória Orientador: João Carlos Setubal Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação Made available in DSpace on 2018-07-26T12:21:55Z (GMT). No. of bitstreams: 1 AbreuJunior_LidioNunesde_M.pdf: 9384178 bytes, checksum: ab1f02d1d27d732c311ae88caa13f5d9 (MD5) Previous issue date: 2000 Resumo: O assunto principal desta tese é o problema da designação: dado um grafo bipartido com custos nas arestas, obter um emparelhamento perfeito de custo mínimo. Na primeira parte do trabalho apresentamos uma revisão detalhada dos conceitos e principais resultados da literatura sobre esse problema. Na segunda parte, discutimos uma variante paramétrica, na qual cada aresta e tem seu custo dado por uma expressão do tipo ce° + ?ce?, onde ce° e ce? são constantes e ? é o parâmetro, cujo valor é real e varia. Nesta variante o objetivo é obter todas as soluções do problema para um intervalo de valores de A no menor tempo possível. Nesta parte inicialmente fazemos uma revisão de resultados da literatura que apresentam técnicas gerais para a resolução de problemas paramétricos em Otimização Combinatória. Em seguida apresentamos uma abordagem, também da literatura, específica para o problema do fluxo de custo mínimo, do qual o problema da designação é um caso especial. Esta abordagem se baseia em propriedades do algoritmo simplex de rede. Em seguida apresentamos uma nova abordagem, baseada numa relação entre o problema do fluxo de custo mínimo e o problema do ciclo de razão mínima. A complexidade desta nova abordagem é insatisfatória quando se quer resolver uma instância do problema da designação paramétrico, pois a complexidade conhecida do problema do ciclo de razão mínima é maior do que a complexidade conhecida do problema da designação. Esta nova abordagem entretanto é satisfatória do ponto de vista teórico quando aplicada ao problema do fluxo de custo mínimo paramétrico. O trabalho finaliza apresentando uma comparação experimental entre as abordagens "simplex de rede" e "ciclo de razão mínima" para o problema do fluxo mínimo paramétrico, mostrando que a primeira é muito superior à segunda. Abstract: This dissertation is about the Assignment Problem: given an edge-weighted bipartite graph, find a perfect matching of minimum weight. In the first part of this work we present a detailed survey of the literature on this problem, including basic concepts and main results. In the second part, we discuss a parametric variant of this problem. In this variant, the weight of each edge e is given tipo ce° + ?ce?, where ce° e ce? are constants and ? is the parameter, that is, a real value that can vary. For a given range of A values we want to find all solutions to the corresponding assignment problems in the least possible time. In this part of the work we initially present a survey of techniques for solving general Combinatorial Optimization parametric problems. We then present a technique, also from the literature, for solving the parametric minimum cost flow problem, of which the assignment problem is a special case. This technique is based on the network simplex algorithm. We then present a new technique, also for solving the parametric minumum cost flow problem, based on a reduction to the minimum cost-to-time ratio cycle problem. This technique is not satisfactory for solving parametric assignment problems, because the best known algorithm for the minimum cost-to-time ratio cycle problem has worst running time than the best algorithm known for the assignment problem. It is however satisfactory from a theoretical point of view when applied to parametric minimum cost flow problems, because its running time is better than the best known running time for a certain class of inputs. We made an experimental comparison between the "network simplex" approach and the "minimum ratio cycle approach", but found that in all cases the "network simplex" approach has faster running times. Mestrado Mestre em Ciência da Computação 2000 2018-07-26T12:21:55Z 2018-07-26T12:21:55Z info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis ABREU JUNIOR, Lidio Nunes de. O problema da designação e sua variante parametrica. 2000. 96p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/275895>. Acesso em: 26 jul. 2018. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275895 por info:eu-repo/semantics/openAccess 96p. : il. application/octet-stream [s.n.] Universidade Estadual de Campinas. Instituto de Computação Programa de Pós-Graduação em Ciência da Computação reponame:Repositório Institucional da Unicamp instname:Universidade Estadual de Campinas instacron:UNICAMP |