Solving the art gallery problem = a practical and robust method for optimal point guard positioning = Resolução do problema da galeria de arte: um método prático e robusto para o posicionamento ótimo de guardas-ponto

Orientadores: Cid Carvalho de Souza, Pedro Jussieu de Rezende === Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação === Made available in DSpace on 2018-08-25T16:57:43Z (GMT). No. of bitstreams: 1 Tozoni_DaviColli_M.pdf: 4212278 bytes, checksum: afb91e202a72e28729ff...

Full description

Bibliographic Details
Main Author: Tozoni, Davi Colli, 1988-
Other Authors: UNIVERSIDADE ESTADUAL DE CAMPINAS
Format: Others
Language:Inglês
Published: [s.n.] 2014
Subjects:
Online Access:TOZONI, Davi Colli. Solving the art gallery problem: a practical and robust method for optimal point guard positioning = Resolução do problema da galeria de arte: um método prático e robusto para o posicionamento ótimo de guardas-ponto. 2014. 80 p. Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/275523>. Acesso em: 25 ago. 2018.
http://repositorio.unicamp.br/jspui/handle/REPOSIP/275523
Description
Summary:Orientadores: Cid Carvalho de Souza, Pedro Jussieu de Rezende === Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação === Made available in DSpace on 2018-08-25T16:57:43Z (GMT). No. of bitstreams: 1 Tozoni_DaviColli_M.pdf: 4212278 bytes, checksum: afb91e202a72e28729ff14334901884f (MD5) Previous issue date: 2014 === Resumo: Nesta dissertação, apresentamos nossa pesquisa sobre o Problema da Galeria de Arte (AGP), um dos problemas mais estudados em Geometria Computacional. O AGP, que é um problema NP-difícil, consiste em encontrar o número mínimo de guardas suficiente para garantir a cobertura visual de uma galeria de arte representada por um polígono. Na versão do problema tratada neste trabalho, usualmente chamada de Problema da Galeria de Arte com Guardas-Ponto, os guardas podem ser posicionados em qualquer lugar do polígono e o objetivo é cobrir toda a região, que pode ou não conter buracos. Nós estudamos como aplicar conceitos e algoritmos de Geometria Computacional, bem como Técnicas de Programação Inteira, com a finalidade de resolver o AGP de forma exata. Este trabalho culminou na criação de um novo algoritmo para o AGP, cuja ideia é gerar, de forma iterativa, limitantes superiores e inferiores para o problema através da resolução de versões discretizadas do AGP, que são reduzidas a instâncias do Problema de Cobertura de Conjuntos. O algoritmo foi implementado e testado em mais de 2800 instâncias, de diferentes tamanhos e classes. A técnica foi capaz de resolver, em minutos, mais de 90% de todas as instâncias consideradas, incluindo polígonos com milhares de vértices, e ampliou em muito o conjunto de casos para os quais são conhecidas soluções exatas. Até onde sabemos, apesar do extensivo estudo do AGP nas últimas quatro décadas, nenhum outro algoritmo demonstrou a capacidade de resolver o AGP de forma tão eficaz como a técnica aqui descrita === Abstract: In this dissertation, we present our research on the Art Gallery Problem (AGP), one of the most investigated problems in Computational Geometry. The AGP, which is a known NP-hard problem, consists in finding the minimum number of guards sufficient to ensure the visibility coverage of an art gallery represented as a polygon. In the version of the problem treated in this work, usually called Art Gallery Problem with Point Guards, the guards can be placed anywhere in the polygon and the objective is to cover the whole region, which may or not have holes. We studied how to apply Computational Geometry concepts and algorithms as well as Integer Programming techniques in order to solve the AGP to optimality. This work culminated in the creation of a new algorithm for the AGP, whose idea is to iteratively generate upper and lower bounds for the problem through the resolution of discretized versions of the AGP, which are reduced to instances of the Set Cover Problem. The algorithm was implemented and tested on more than 2800 instances of different sizes and classes of polygons. The technique was able to solve in minutes more than 90% of all instances considered, including polygons with thousands of vertices, greatly increasing the set of instances for which exact solutions are known. To the best of our knowledge, in spite of the extensive study of the AGP in the last four decades, no other algorithm has shown the ability to solve the AGP as effectively as the one described here === Mestrado === Ciência da Computação === Mestre em Ciência da Computação