Summary: | Submitted by Gabriel Brandão de Gracia (gb9950@gmail.com) on 2018-01-31T15:49:29Z
No. of bitstreams: 2
Dissertação Final.pdf: 530405 bytes, checksum: 393276cfee653f2dd2aedc610270b907 (MD5)
Dissertação Final.pdf: 530405 bytes, checksum: 393276cfee653f2dd2aedc610270b907 (MD5) === Rejected by Hellen Sayuri Sato null (hellen@ift.unesp.br), reason: Favor deletar um arquivo e acrescentar o abstract on 2018-01-31T16:48:03Z (GMT) === Submitted by Gabriel Brandão de Gracia (gb9950@gmail.com) on 2018-01-31T16:56:21Z
No. of bitstreams: 1
Dissertação Final.pdf: 530405 bytes, checksum: 393276cfee653f2dd2aedc610270b907 (MD5) === Approved for entry into archive by Hellen Sayuri Sato null (hellen@ift.unesp.br) on 2018-01-31T17:12:15Z (GMT) No. of bitstreams: 1
gracia_gb_me_ift.pdf.pdf: 530405 bytes, checksum: 393276cfee653f2dd2aedc610270b907 (MD5) === Made available in DSpace on 2018-01-31T17:12:15Z (GMT). No. of bitstreams: 1
gracia_gb_me_ift.pdf.pdf: 530405 bytes, checksum: 393276cfee653f2dd2aedc610270b907 (MD5)
Previous issue date: 2017-02-24 === Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) === Ao longo desta dissertação desenvolvemos o formalismo de Hamilton-Jacobi para teorias de campo para o caso de sistemas singulares e não-singulares. Em seguida, aplicamos tal formalismo nos modelos BF em D=1+1, D=2+1 e D=3+1 dimensões a fim de caracterizar os seus espaços de fase. Mostramos que a partir desse formalismo é possível obter as simetrias locais desses modelos assim como os seus respectivos geradores. === Throughout this dissertation we develop the Hamilton-Jacobi formalism for field theories in the case of singular and non-singular systems. Next, apply such formalism on the BF models in D=1+1, D=2+1 e D=3+1 dimensions in order to characterize their phase spaces. We show from this formalism, that is possible to find the local symmetries of those models as well as their respective generators. === CNPq: 132619/2015-6
|