Summary: | Submitted by OCTAVIO MANUEL PALACIOS GIMÉNEZ null (opalacios7@gmail.com) on 2018-01-10T10:10:20Z
No. of bitstreams: 1
Tesis_completa.pdf: 26112515 bytes, checksum: 3ddefcdf63a47077ccb1b62c384cae1b (MD5) === Approved for entry into archive by Adriana Aparecida Puerta null (dripuerta@rc.unesp.br) on 2018-01-10T18:40:10Z (GMT) No. of bitstreams: 1
gimenez_omp_dr_rcla.pdf: 25788766 bytes, checksum: da0e0599de64bcf81bfb8ddceda0c8e7 (MD5) === Made available in DSpace on 2018-01-10T18:40:10Z (GMT). No. of bitstreams: 1
gimenez_omp_dr_rcla.pdf: 25788766 bytes, checksum: da0e0599de64bcf81bfb8ddceda0c8e7 (MD5)
Previous issue date: 2017-12-12 === Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) === Os cromossomos sexuais se originam independentemente de um par de homólogos autossômicos e em várias linhagens apresentam características comuns, tais como acúmulo de vários tipos de DNA repetitivo, restrição da recombinação e perda ou ganho de genes devido á diferenciação morfológica e genética entre os cromossomos sexuais X e Y ou Z e W. Estas características representam um exemplo fascinante de convergência evolutiva. Em Orthoptera, o sistema cromossômico sexual comumente encontrado na maioria das espécies estudadas é do tipo X0♂/XX♀. Entretanto, sistemas cromossômicos sexuais derivados dos tipos neo-XY♂/XX♀ e neo- X1X2Y♂/X1X1X2X2♀ são também observados, surgindo repetidamente por fusões cêntricas e em tandem, inversões e dissociações envolvendo cromossomos sexuais ancestrais e autossomos. O presente trabalho teve três objetivos. Primeiro, entender o possível papel dos DNAs repetitivos na estrutura/diversificação dos cromossomos sexuais simples e derivados, a partir do isolamento e mapeamento físico de sequências, tais como, famílias multigênicas, DNA satélite (DNAsat) e microssatélites, nas espécies Gryllus assimilis, Cycloptiloides americanus e Eneoptera surinamensis. Segundo, testar e comparar transcrição diferencial de DNAsat entre diferentes tecidos, sexos e espécies a partir de transcriptomas de Gryllus assimilis, G. bimaculatus, G. firmus e G. rubens, com o objetivo de entender os possíveis papéis funcionais destas sequências na regulação gênica, modulação da cromatina e como componentes funcionais de importantes estruturas como telômeros, centrômeros e cromossomos sexuais. Terceiro, a partir de transcriptomas de espécies de grilos (Gryllus assimilis, G. bimaculatus e G. firmus) prospectar genes codificadores de proteínas relacionados com a determinação sexual, envolvidos com o fitness reprodutivo e genes enviesados do sexo, responsáveis pelas diferenças fenotípicas entre machos e fêmeas, e tentar elucidar de uma maneira comparativa os fatores evolutivos atuando nestes loci. Origem de novo de cromossomos sexuais mediante rearranjos cromossômicos, assim como acúmulo de DNA repetitivo que levaram a diferenciação entre cromossomos sexuais são relatados em C. americanus (X1X20) e E. surianmensis (neo-X1X2Y). Estas características observadas em grilos representam outro caso notável de convergência evolutiva devido os cromossomos sexuais não relacionados compartilharem muitas propriedades entre táxons distantes. Acúmulo surpreendente de loci de DNAsat foi encontrado no neo-Y altamente diferenciado de E. surinamensis, incluindo 39 DNAsat representados em excesso neste cromossomo, que é a maior diversidade de DNAsat até agora relatada para cromossomos sexuais. Foi documentado que, particularmente os DNAsat, contribuíram grandemente para o aumento de tamanho genômico entre G. assimilis e E. surinamensis. Um achado interessante foi a identificação de DNAsat conservados entre espécies de grilos (Gryllus assimilis, G. bimaculatus e G. firmus), mas transcritos diferencialmente. Os dados relativos à presença de DNAsat no genoma de G. assimilis foram discutidos em um contexto evolutivo, com dados transcricionais permitindo comparações entre os sexos e entre os tecidos quando possível. Foram discutidas hipóteses para a conservação e transcrição de DNAsat em Gryllus, que podem resultar do seu papel na diferenciação sexual no nível da cromatina, na formação da heterocromatina e na função centromérica. Outra descoberta foi a identificação de genes determinantes do sexo e outros genes relacionados ao fitness reprodutivo, como a biossíntese de hormônios de insetos e ritmo circadiano entre espécies de Gryllus. Os efetores e os alvos downstream das vias de determinação do sexo foram previamente identificados em outros insetos, mas nunca em Orthoptera. Usando G. assimilis como modelo para estudar genes enviesados do sexo foi possível identificar um conjunto de genes altamente expressos que podem explicar diferenças fenotípicas entre os sexos. Estimou-se que os genes codificadores de proteínas relacionadas com a diferenciação sexual e com o fitness reprodutivo evoluem mais rapidamente do que os genes não reprodutivos (genes housekeeping) como resultado de uma forte seleção positiva nos primeiros. Além disso, foi encontrado que as espécies estudadas apresentam níveis excepcionalmente elevados de duplicações gênicas. As descobertas sugerem que as duplicações gênicas podem desempenhar um papel na expressão de genes enviesados do sexo no grilo de campo G. assimilis, uma espécie que no futuro provavelmente irá fornecer informações sobre genômica funcional e epigenética da determinação do sexo. === Sex chromosomes have arisen independently from an ordinary autosomal pair and in several lineages they present common characteristics, such as accumulation of distinct classes of repetitive DNAs, restriction of the recombination and loss or gain of genes due to the morphological and genetic differentiation between the sexual chromosomes X and Y or Z and W. These characteristics represent a fascinating example of evolutionary convergence. In Orthoptera, the X0♂/XX♀ sex-determining system is considered modal but eventually, diverse sex chromosome systems evolved several times, such as neo-XY♂/XX♀, X1X20♂/X1X1X2X2♀ and even neo- X1X2Y♂/X1X1X2X2♀. It was found that particularly centric fusions (i.e., Robertsonian translocations) and tandem fusions with autosomes, dissociations and inversions contributed to the formation of neo-sex chromosomes in Orthoptera. The present work had three objectives. First, get insights of the role of repetitive DNAs in the structure/diversification of simple and derivative sex-chromosomes by isolation and physical mapping of repetitive DNA sequences, such as multigene families, satellite DNA (satDNA) and microsatellites using Gryllus assimilis, Cycloptiloides americanus e Eneoptera surinamensis, as models. Second, looking at differential satDNA transcription between different tissues, sexes, and species from transcriptomes of Gryllus assimilis, G. bimaculatus, G. firmus and G. rubens, I tried to understand the possible functional roles of these sequences in gene regulation, chromatin modulation and as functional components of important structures such as telomeres, centromeres and sex chromosomes. Third, using transcriptomes from cricket species (Gryllus assimilis, G. bimaculatus and G. firmus), I searched for genes encoding proteins related to sexual determination, reproductive fitness and sex-biased genes which are responsible for the phenotypic differences between males and females. I also tried to elucidate in a comparative way the evolutionary factors acting at these loci. De novo origin of sex chromosomes by chromosomal rearrangements, as well as repetitive DNA accumulation that led to the differentiation between sex chromosomes are reported for C. americanus (X1X20) e E. surianmensis (neo-X1X2Y). These features observed in crickets represent another remarkable case of evolutionary convergence because unrelated sex chromosomes share many common properties among distant taxa. Especially astonishing accumulation of satDNAs loci was found in the highly differentiated neo-Y, including 39 satDNAs over-represented in this chromosome, which is the greatest satDNAs diversity yet reported for sex chromosomes. It has been documented that, particularly the satDNA, contributed greatly to the increase in genomic size between G. assimilis and E. surinamensis. An interesting finding was the identification of satDNA conserved among species of crickets (Gryllus assimilis, G. bimaculatus and G. firmus), but differentially transcribed. The data regarding satDNA presence in G. assimilis genome was discussed in an evolutionary context, with transcriptional data enabling comparisons between sexes and across tissues when possible. I discussed hypotheses for the conservation and transcription of satDNAs in Gryllus, which might result from their role in sexual differentiation at the chromatin level, heterochromatin formation, and centromeric function. Another finding was the identification of sex-determining genes and other genes related to reproductive fitness, such as biosynthesis of insect hormones and circadian rhythm among Gryllus species. The effectors as well as downstream targets of sex-determination pathways have been previously identified in other insects but never in Orthoptera. Using G. assimilis to study sex-biased genes I identified a set of highly expressed genes that might account for phenotypic differences between sexes. Furthermore, I estimated that proteinencoding reproductive genes evolve faster than non-reproductive genes as result of strong positive selection at those loci. It was documented that the species studied harbor exceptionally high levels of gene duplications. The findings suggest that gene duplications may play a role in sex-biased genes expression in the field cricket G. assimilis, a species likely to yield insights into the functional genomics and epigenetics of sex determination. === FAPESP: 2014/02038-8
|