Formas aditivas sobre corpos p-ádicos

Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. === Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-20T16:20:27Z No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5)...

Full description

Bibliographic Details
Main Author: Veras, Daiane Soares
Other Authors: Godinho, Hemar Teixeira
Language:Portuguese
Published: 2017
Subjects:
Online Access:http://repositorio.unb.br/handle/10482/24228
Description
Summary:Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2017. === Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-20T16:20:27Z No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) === Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-08-22T18:33:23Z (GMT) No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) === Made available in DSpace on 2017-08-22T18:33:23Z (GMT). No. of bitstreams: 1 2017_DaianeSoaresVeras.pdf: 2731129 bytes, checksum: 2adb78a1c6d752fe25ba2eff7632aa9c (MD5) Previous issue date: 2017-08-22 === Davenport e Lewis provaram uma versão da Conjectura de Artin que diz que, denotando por Γ* (k , p) o menor número de variáveis para o qual uma forma aditiva com coeficientes inteiros e grau k possui solução p−ádica não trivial, onde p é um número primo, então Γ* (k , p) ≤ k 2 +1 e a igualdade acontece quando p = k+1. Sabe-se que, em geral, quando k + 1 é composto essa cota é suficiente, mas não é necessária. Nessa tese melhoramos a cota dada pela conjectura e obtemos o número exato de variáveis necessárias para garantir a solubilidade p-ádica não trivial de uma forma aditiva de grau k com coeficientes inteiros, sempre que p − 1 divide k. Mais precisamente, escrevendo k = γq + r onde γ depende do grau k e0 ≤ r ≤ γ − 1, provamos que Γ* (k , p)≤( p γ−1) q+ p r , e a igualdade vale para os primos p tais que p − 1 divide k. Como aplicação desse resultado, mostramos que, se k = 54, então 1049 variáveis são suficientes para garantir a solubilidade p-ádica não trivial para todo p. Para k = 24, M. P. Knapp mostrou que são necessárias 289 variáveis para garantir a solubilidade p-ádica não trivial para todo p, entretanto, ainda como aplicação do resultado citado acima, provamos que, se p ≠ 13, então 140 variáveis são suficientes para garantir a solubilidade desejada. Além disso, encontramos o valor exato de Γ* (10 , p) para cada p primo. === Davenport and Lewis have proved a version of Artin’s Conjecture wich states that, denoting by Γ* (k , p) the least number of variables for wich an additive form with integer coefficients and degree k has a nontrivial p-adic solution, where p is a prime number, then Γ* (k , p)≤ k 2 +1 and the equality occurs when p = k + 1. It is known that in general when k + 1 is composite this bound is sufficient but it is not necessary. In this work we improve the conjecture´s bound and give the exact number of necessary variables to states that an additive form with integers coefficients and degree k has a nontrivial p-adic solution, since p − 1 divide k. More precisely, writing k = γq + r with γ depending of degree k and 0 ≤ r ≤ γ − 1, then Γ* (k , p)≤ ( p γ−1) q+ p r , and the equality occurs when p − 1 divide k. As an application of this result we show that, if k = 54, then 1049 variables are sufficient to ensure the nontrivial p-adic solubility for all p. For k = 24, M. P. Knapp has proved that 289 variables are necessary to ensure the nontrivial p-adic solution for all p, however, still as an application of the previous result, we show that, if p ≠ 13, then 140 variables are sufficient to ensure de solubility desired. Moreover, we give the exact value to Γ* (10, p ) for each prime p.