Summary: | Dissertação (mestrado)–Universidade de Brasília, Universidade UnB de Planaltina, Programa de Pós-Graduação em Ciência de Materiais, 2016. === Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-07-08T12:04:02Z
No. of bitstreams: 1
2016_PedroHenriquePereiraLira.pdf: 4515253 bytes, checksum: 1c80f0524d222660070cb7cc5baaa227 (MD5) === Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-07-08T20:54:25Z (GMT) No. of bitstreams: 1
2016_PedroHenriquePereiraLira.pdf: 4515253 bytes, checksum: 1c80f0524d222660070cb7cc5baaa227 (MD5) === Made available in DSpace on 2016-07-08T20:54:25Z (GMT). No. of bitstreams: 1
2016_PedroHenriquePereiraLira.pdf: 4515253 bytes, checksum: 1c80f0524d222660070cb7cc5baaa227 (MD5) === O presente estudo analisa os mecanismos que governam o transporte eletrônico em semicondutores orgânicos, aplicando-os em transistores orgânicos de efeito de campo (OFET). O semicondutor utilizado nos testes foi o pentaceno em um OFET de arquétipo “bottom-gate”. As teorias abordadas para o transporte eletrônico incluíram o acoplamento elétron-fônon, polarons, mecanismo de hopping e percolação. Realizamos a análise dos dados por meio da metodologia de Aproximação de Canal Gradual (GCA). As simulações computacionais que fizemos foram baseadas no mecanismo de condutividade por percolação desenvolvido por Vissenberg-Matters (VM) [1]. Por meio da GCA, demonstramos que o OFET estudado tem uma razão on/off de 102 a 103 para uma voltagem de -30V aplicada no dreno. Sendo que o fim do regime linear se deu logo após os -9V e o início do regime de saturação ocorreu logo após -16V. A mobilidade de cargas calculada no canal do OFET durante o regime de saturação foi de 0,42 cm2/V.s e de 0,96 cm2/V.s durante o regime linear. Pelas simulações feitas do modelo VM, obtivemos um bom ajuste ao comportamento linear do transistor operado, conseguindo explicar quantitativamente o transporte de cargas em sistemas desordenados, tais como são os vistos em materiais orgânicos. _______________________________________________________________________________________________ ABSTRACT === The present dissertation is focused on analizing the mechanisms that govern the electronic transport in organic semiconductors, applying these concepts in organic field-effect transistors (OFET). The chosen semiconductor was pentacene, which was the semiconducting layer in an OFET built under the “bottom-gate” archetype. The theories analised to describe the electronic transport comprise the electron-phonon coupling, polarons, hopping and percolation mechanisms. The data analysis was performed by the Gradual Channel Approximation (GCA) method. The computational simulations were based on the percolation theory for conductivity developed by Vissenberg and Matters (VM) [1]. By means of the GCA, it is shown that the analyzed OFET has an on/off ratio ranging from 102 to 103 when submitted to a voltage of -30V applied to the drain terminal. The linear regime occured until -9V and the saturation regime started after -16V. The carrier mobility in the OFET channel while operating at the saturation regime was 0.42 cm2/V.s, and 0.96 cm2/V.s while operating at the linear regime. A fine adjustment to the transistor linear regime was obtained by the VM model simulations. This approach was able to explain quantitatively the charge transport in disordered systems, such as in organic materials.
|