Summary: | Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2014. === Submitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-03-04T18:00:00Z
No. of bitstreams: 1
2014_JamerInsupeRoldanGonzales.pdf: 823215 bytes, checksum: ff34501bb90f494ad35535e0cd68aec7 (MD5) === Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2015-05-04T12:38:49Z (GMT) No. of bitstreams: 1
2014_JamerInsupeRoldanGonzales.pdf: 823215 bytes, checksum: ff34501bb90f494ad35535e0cd68aec7 (MD5) === Made available in DSpace on 2015-05-04T12:38:49Z (GMT). No. of bitstreams: 1
2014_JamerInsupeRoldanGonzales.pdf: 823215 bytes, checksum: ff34501bb90f494ad35535e0cd68aec7 (MD5) === Os principais resultados desta dissertação são baseados no artigo de M. Aizenman, D. J. Barsky, e R. Fernández intitulado: The Phase Transition in a Geral Class of Ising-Type Models is Sharp. O objetivo central é mostrar a prova de dois teoremas: O primeiro (na ordem do artigo) mostra que, numa classe geral de modelos de spins (tipo Ising estão incluídos), a temperatura crítica para susceptibilidade e para a magnetização coincidem. O segundo teorema, que implica o primeiro, estabelece importantes desigualdades diferenciais nessa classe geral de modelos, que em no casso do modelo de spins de Ising é dada por M ≤ βh× +M3 + βM2 σM/σβ. Também mostramos a prova da desigualdade de Simon-Lieb baseada no artigo de B. Simon intitulado: Correlation inequalities and the decay of correlations in ferromagnets. _______________________________________________________________________________ ABSTRACT === The main results of this master’s thesis are based on the M. Aizenman, D. J. Barsky, and R. Fernández’s paper named: The Phase Transition in a Geral Class of Ising-Type Models is Sharp. The aim is to present the proof of two theorems: the first one states that in a general class of spins models (Ising type are included), the critical temperature for susceptibility and magnetization are the same. The second theorem, which implies the first one, is about certain di_erential inequalities for that general class of models, which in the Ising model reads M ≤ βh× +M3 + βM2 σM/σβ. We also show the proof of the Simon-lieb inequality based on the paper by B. Simon whose title is: Correlation inequalities and the decay of correlations in ferromagnets.
|