Estabilidade de equilíbrio e órbitas periódicas em um sistema Lotka-Volterra com duas presas e um predador

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2008. === Submitted by Jaqueline Oliveira (jaqueoliveiram@gmail.com) on 2008-12-15T15:59:27Z No. of bitstreams: 1 DISSERTACAO_2008_KelemGomesLourenco.pdf: 1422115 bytes, checksum: 20a32fbf536...

Full description

Bibliographic Details
Main Author: Lourenço, Kélem Gomes
Other Authors: Moreira, Helmar Nunes
Language:Portuguese
Published: 2009
Subjects:
Online Access:http://repositorio.unb.br/handle/10482/1287
Description
Summary:Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2008. === Submitted by Jaqueline Oliveira (jaqueoliveiram@gmail.com) on 2008-12-15T15:59:27Z No. of bitstreams: 1 DISSERTACAO_2008_KelemGomesLourenco.pdf: 1422115 bytes, checksum: 20a32fbf536b3c9518ef0a8601e1d847 (MD5) === Approved for entry into archive by Georgia Fernandes(georgia@bce.unb.br) on 2009-02-18T17:36:21Z (GMT) No. of bitstreams: 1 DISSERTACAO_2008_KelemGomesLourenco.pdf: 1422115 bytes, checksum: 20a32fbf536b3c9518ef0a8601e1d847 (MD5) === Made available in DSpace on 2009-02-18T17:36:21Z (GMT). No. of bitstreams: 1 DISSERTACAO_2008_KelemGomesLourenco.pdf: 1422115 bytes, checksum: 20a32fbf536b3c9518ef0a8601e1d847 (MD5) === Neste trabalho analisamos o sistema de equações differenciais com duas presas e um predador do tipo Lotka-Volterra, com e sem colheita. Inicialmente estudamos a estabilidade local e global dos pontos de equilíbrio no primeiro modelo. Posteriormente, no segundo modelo, estudamos o coeficiente de estabilidade das órbitas periódicas, através da forma normal e estimativas numéricas. Através do recurso Maple 11, verificamos o comportamento das soluções e o surgimento das órbitas periódicas. ________________________________________________________________________________________ ABSTRACT === In this work we analyzed the Lotka-Volterra system of diferential equations with two preys and a predator, with and without harvesting. Initially we studied the local and global stability of the points of equilibrium in the first model. Later, in the second model, we studied the coefficient of stability of the periodic orbits, by using normal form and numerical estimatives. By using Maple 11, we verified the behavior of the solutions and the appearance of the periodic orbits.