As identidades de uma álgebra vista como um anel

Tese (doutorado)-Universidade Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012. === Submitted by Gabriela Botelho (gabrielabotelho@bce.unb.br) on 2012-07-11T14:08:42Z No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b3...

Full description

Bibliographic Details
Main Author: Brito, Jorge Augusto Gonçalo de
Other Authors: Krassilnikov, Alexei
Language:Portuguese
Published: 2012
Subjects:
Online Access:http://repositorio.unb.br/handle/10482/10920
id ndltd-IBICT-oai-repositorio.unb.br-10482-10920
record_format oai_dc
collection NDLTD
language Portuguese
sources NDLTD
topic Álgebra
Anéis (Álgebra)
spellingShingle Álgebra
Anéis (Álgebra)
Brito, Jorge Augusto Gonçalo de
As identidades de uma álgebra vista como um anel
description Tese (doutorado)-Universidade Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012. === Submitted by Gabriela Botelho (gabrielabotelho@bce.unb.br) on 2012-07-11T14:08:42Z No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b361270e1 (MD5) === Approved for entry into archive by Jaqueline Ferreira de Souza(jaquefs.braz@gmail.com) on 2012-07-13T11:09:10Z (GMT) No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b361270e1 (MD5) === Made available in DSpace on 2012-07-13T11:09:10Z (GMT). No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b361270e1 (MD5) === Sejam K um corpo de característica 0 e MK o seguinte conjunto de matrizes (Formula: MK é igual uma matriz 3x3 com elementos a11=0; a12=k; a13= k; a21=0; a22=k, a23=k; a31=0; a32=0; a33=0. Aij ∈ k. )Consideramos MK como diversas estruturas algébricas, tais como: K-álgebra associativa, K-álgebra de Lie, anel associativo, anel de Lie, entre outras. Como, pelo resultado de Il‘tyakov, toda álgebra de Lie de dimensão finita sobre um corpo de característica 0 possui uma base finita de identidades, a álgebra de Lie MK possui uma tal base. Por outro lado, Krasilnikov demonstrou recentemente que as identidades do anel de Lie MK não tem base finita. Contudo, estas bases (finita para a álgebra e infinita para o anel) não foram encontradas explicitamente. Neste trabalho exibimos estas bases de identidades. Mais precisamente, demonstramos que MK visto como uma K-álgebra de Lie temuma base formada pela única identidade [x1, x2, [x3, x4], x5] e que uma base de identidades de MK visto como anel de Lie é {[x1,x2,[x3,x4]} U {[x1, x2,[x1,x2,x3,...,xr]] | r=4,6,8,...} U {[x1,x2,[x3,x4,x5,...,xr]] + [x1,x3,[x4,x2,x5,...,xr]] + [x1,x4,[x2,x3,x5,...,xr]] |r=5,7,...}. Além disso, considerando o problema semelhante para álgebras associativas, demonstramos que uma base de identidades da K-álgebra associativa MK é formada por x1[x2, x3]x4 e esta mesma identidade forma uma base de MK visto como anel associativo. Por fim, também encontramos bases de identidades graduadas para MK, com algumas graduações, considerando-lo como as mesmas estruturas algébricas (K-álgebra associativa, K-álgebra de Lie, anel associativo e anel de Lie). _________________________________________________________________________ ABSTRACT === Let K be a field of characteristic 0 and MK the following set of matrices (Formula: MK is equal to a 3x3 matrix with elements a11 = 0 a12 = k, k = a13, a21 = 0 a22 = k, k = a23, a31 = 0 a32 = 0, A33 = 0. Aij ∈ k.) We consider MK as varias algebraic structures, such as: associative K-algebra, Lie K-algebra, associative ring, Lie ring, etc. Since, by Il’tyakov’s result, each finite dimensional Lie algebra over a field of characteristic 0 has a finite basis of identities, the Lie algebra MK has such a basis. On the other hand, recently Krasilnikov proved that the identities of the Lie ring MK has no finite basis. However, these bases (finite for the algebra and infinite for the ring) were not found explicitly. In the presente thesis we exhibit these bases of identities. More precisely, we show that MK viewed as a Lie K-algebra has a basis formed by the single identity [x1, x2, [x3, x4]x5] and a basis of identities for MK viewed as Lie ring is {[x1,x2,[x3,x4]} U {[x1, x2,[x1,x2,x3,...,xr]] | r=4,6,8,...} U {[x1,x2,[x3,x4,x5,...,xr]] + [x1,x3,[x4,x2,x5,...,xr]] + [x1,x4,[x2,x3,x5,...,xr]] |r=5,7,...}. Furthermore, considering the similar problem for associative algebras, we prove that a basis of identities of the associative K-algebra MK consists of x1[x2, x3]x4 and the same identity forms a basis of identities for MK viewed as an associative ring. Finally, we also found a basis of graded identities for MK, with some gradings, considering it as the same algebraic structures (associative K-algebra, Lie K-algebra, associative ring and Lie ring).
author2 Krassilnikov, Alexei
author_facet Krassilnikov, Alexei
Brito, Jorge Augusto Gonçalo de
author Brito, Jorge Augusto Gonçalo de
author_sort Brito, Jorge Augusto Gonçalo de
title As identidades de uma álgebra vista como um anel
title_short As identidades de uma álgebra vista como um anel
title_full As identidades de uma álgebra vista como um anel
title_fullStr As identidades de uma álgebra vista como um anel
title_full_unstemmed As identidades de uma álgebra vista como um anel
title_sort as identidades de uma álgebra vista como um anel
publishDate 2012
url http://repositorio.unb.br/handle/10482/10920
work_keys_str_mv AT britojorgeaugustogoncalode asidentidadesdeumaalgebravistacomoumanel
_version_ 1718737638299533312
spelling ndltd-IBICT-oai-repositorio.unb.br-10482-109202018-09-23T06:06:15Z As identidades de uma álgebra vista como um anel Brito, Jorge Augusto Gonçalo de Krassilnikov, Alexei Álgebra Anéis (Álgebra) Tese (doutorado)-Universidade Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012. Submitted by Gabriela Botelho (gabrielabotelho@bce.unb.br) on 2012-07-11T14:08:42Z No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b361270e1 (MD5) Approved for entry into archive by Jaqueline Ferreira de Souza(jaquefs.braz@gmail.com) on 2012-07-13T11:09:10Z (GMT) No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b361270e1 (MD5) Made available in DSpace on 2012-07-13T11:09:10Z (GMT). No. of bitstreams: 1 2011_JorgeAugustoGonçalodeBrito.pdf: 541198 bytes, checksum: 1feb661eddb4a89fef46878b361270e1 (MD5) Sejam K um corpo de característica 0 e MK o seguinte conjunto de matrizes (Formula: MK é igual uma matriz 3x3 com elementos a11=0; a12=k; a13= k; a21=0; a22=k, a23=k; a31=0; a32=0; a33=0. Aij ∈ k. )Consideramos MK como diversas estruturas algébricas, tais como: K-álgebra associativa, K-álgebra de Lie, anel associativo, anel de Lie, entre outras. Como, pelo resultado de Il‘tyakov, toda álgebra de Lie de dimensão finita sobre um corpo de característica 0 possui uma base finita de identidades, a álgebra de Lie MK possui uma tal base. Por outro lado, Krasilnikov demonstrou recentemente que as identidades do anel de Lie MK não tem base finita. Contudo, estas bases (finita para a álgebra e infinita para o anel) não foram encontradas explicitamente. Neste trabalho exibimos estas bases de identidades. Mais precisamente, demonstramos que MK visto como uma K-álgebra de Lie temuma base formada pela única identidade [x1, x2, [x3, x4], x5] e que uma base de identidades de MK visto como anel de Lie é {[x1,x2,[x3,x4]} U {[x1, x2,[x1,x2,x3,...,xr]] | r=4,6,8,...} U {[x1,x2,[x3,x4,x5,...,xr]] + [x1,x3,[x4,x2,x5,...,xr]] + [x1,x4,[x2,x3,x5,...,xr]] |r=5,7,...}. Além disso, considerando o problema semelhante para álgebras associativas, demonstramos que uma base de identidades da K-álgebra associativa MK é formada por x1[x2, x3]x4 e esta mesma identidade forma uma base de MK visto como anel associativo. Por fim, também encontramos bases de identidades graduadas para MK, com algumas graduações, considerando-lo como as mesmas estruturas algébricas (K-álgebra associativa, K-álgebra de Lie, anel associativo e anel de Lie). _________________________________________________________________________ ABSTRACT Let K be a field of characteristic 0 and MK the following set of matrices (Formula: MK is equal to a 3x3 matrix with elements a11 = 0 a12 = k, k = a13, a21 = 0 a22 = k, k = a23, a31 = 0 a32 = 0, A33 = 0. Aij ∈ k.) We consider MK as varias algebraic structures, such as: associative K-algebra, Lie K-algebra, associative ring, Lie ring, etc. Since, by Il’tyakov’s result, each finite dimensional Lie algebra over a field of characteristic 0 has a finite basis of identities, the Lie algebra MK has such a basis. On the other hand, recently Krasilnikov proved that the identities of the Lie ring MK has no finite basis. However, these bases (finite for the algebra and infinite for the ring) were not found explicitly. In the presente thesis we exhibit these bases of identities. More precisely, we show that MK viewed as a Lie K-algebra has a basis formed by the single identity [x1, x2, [x3, x4]x5] and a basis of identities for MK viewed as Lie ring is {[x1,x2,[x3,x4]} U {[x1, x2,[x1,x2,x3,...,xr]] | r=4,6,8,...} U {[x1,x2,[x3,x4,x5,...,xr]] + [x1,x3,[x4,x2,x5,...,xr]] + [x1,x4,[x2,x3,x5,...,xr]] |r=5,7,...}. Furthermore, considering the similar problem for associative algebras, we prove that a basis of identities of the associative K-algebra MK consists of x1[x2, x3]x4 and the same identity forms a basis of identities for MK viewed as an associative ring. Finally, we also found a basis of graded identities for MK, with some gradings, considering it as the same algebraic structures (associative K-algebra, Lie K-algebra, associative ring and Lie ring). 2012-07-13T11:09:10Z 2012-07-13T11:09:10Z 2012-07-13T11:09:10Z 2011-12-23 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis BRITO, Jorge Augusto Gonçalo de. As identidades de uma álgebra vista como um anel. 2012. 103 f. Tese (Doutorado em Matemática)-Universidade Brasília, Brasília, 2012. http://repositorio.unb.br/handle/10482/10920 por info:eu-repo/semantics/openAccess reponame:Repositório Institucional da UnB instname:Universidade de Brasília instacron:UNB