USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The objective of this study was to test the potential of satellite imagery, TM/Landsat 5, for discrimination of plantations of different ages of Eucalyptus dunnii and Eucalyptus urograndis and correlate the volume of these plantations,...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | Portuguese |
Published: |
Universidade Federal de Santa Maria
2014
|
Subjects: | |
Online Access: | http://repositorio.ufsm.br/handle/1/8730 |
id |
ndltd-IBICT-oai-repositorio.ufsm.br-1-8730 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
format |
Others
|
sources |
NDLTD |
topic |
Sensoriamento Remoto Índice de Vegetação Inventário Florestal Remote Sensing Vegetation Index Forest Inventory CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL |
spellingShingle |
Sensoriamento Remoto Índice de Vegetação Inventário Florestal Remote Sensing Vegetation Index Forest Inventory CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL Goergen, Laura Camila de Godoy USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA |
description |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior === The objective of this study was to test the potential of satellite imagery, TM/Landsat 5, for discrimination of plantations of different ages of Eucalyptus dunnii and Eucalyptus urograndis and correlate the volume of these plantations, obtained from forest inventory, with the spectral responses. The values of spectral reflectance of the surface of the original images were recovered and after image geocoding the values of reflectance were extracted in six spectral bands TM sensor (B1, B2, B3, B4, B5 and B7) stand for the four groups studied: E. dunnii age 3 and age 5 and E. urograndis to 2.2 years and 4.2 years of age. In addition to the spectral bands vegetation indices SR, NDVI, SAVI_0.5, SAVI_0.25, MVI and GNDVI were used. To evaluate the behavior of the spectral variables for each stand, it was performed an analysis of principal components which, for the year 2009 , the variables B2 , B3 , GNDVI , B4 , B5 and B1 , were, in descending order , the most significaqnt. And for the year 2011, the most significant values were the SAVI_0.25, SAVI_0.5, B4, SR, MVI, NDVI and B2 variables, in descending order. From the discriminant analysis data of three discriminant functions (λ) to separate the four groups were generated. The structural attributes with better discriminatory power (in order of importance) were: SAVI_0.25, SAVI_0.5, B5, MVI, B7, B1 and B3. The discriminant model generated showed that functions correctly classified 100% of the cases in their predicted groups, revealing that the spectral variables were good predictors for distinguishing plantations. Correlation analysis between the biophysical variable (timber volume) was not significant for the planting of E. dunnii at 3 years old. For the planting of E. dunnii at 5 years was the most correlated variable B2 (r= -0.55). The B4 was the variable most strongly correlated with the volume in plantations of E. urograndis at 2.2 years old (r= 0.75) followed by the index Ln (SAVI_0.5) with r= 0.72. For E. urograndis at 4.2 years of age, the variables with the highest correlation were B2 (r= 0.67), followed by Ln (SAVI_0.5) with r= 0.63. From the correlation coefficients obtained, equations to estimate the volume were modeled. For the settlement of E. dunnii at 5 years, the best fitted equation explained 48% of the variability in the volume. The population of E. urograndis at 2.2 years obtained the best results, in which 57% of the variability was explained by the volume of spectral variables. The population of E. urograndis at 4.2 years obtained the lowest results, where only 45% of the variability was explained by the volume spectral variables. It was concluded that the methodology can be used to aid in species identification from satellite images and further studies should be conducted to estimate volume from spectral variables. === O objetivo deste trabalho foi testar o potencial de imagem de satélite, TM/Landsat 5, na discriminação de plantios de diferentes idades de Eucalyptus dunnii e Eucalyptus urograndis e, correlacionar o volume desses plantios, obtidos a partir de inventário florestal, com as respostas espectrais. Os valores de reflectância espectral de superfície foram recuperados das imagens originais e após o georreferenciamento da imagem foram extraídos os valores das reflectâncias em seis bandas espectrais do sensor TM (B1, B2, B3, B4, B5 e B7) para os quatro povoamentos estudados: E. dunnii aos 3 anos e aos 5 anos e E. urograndis aos 2,2 anos e 4,2 anos de idade. Além das bandas espectrais foram utilizados os índices de vegetação SR, NDVI, SAVI_0,5, SAVI_0,25, MVI e GNDVI. Para avaliar o comportamento das variáveis espectrais para cada povoamento foi realizada uma análise de componentes principais em que, para o ano de 2009, as variáveis B2, B3, GNDVI, B4, B5 e B1, foram, em ordem decrescente, as mais significativas. E para o ano de 2011, os valores mais significativos corresponderam as variáveis SAVI_0,25, SAVI_0,5, B4, SR, MVI, NDVI e B2, em ordem decrescente. A partir da análise discriminante dos dados foram geradas três funções discriminantes (λ) para separação dos quatro grupos. Os atributos estruturais com melhor poder de discriminação (em ordem de importância) foram: SAVI_0,25, SAVI_0,5, B5, MVI, B7, B1 e B3. O modelo discriminante gerado demonstrou que as funções classificaram 100% dos casos em seus grupos preditos, revelando que as variáveis espectrais foram boas preditoras para distinguir os plantios. A análise de correlação entre a variável biofísica (volume de madeira) não foi significativa para o plantio de E. dunnii aos 3 anos de idade. Para o plantio de E. dunnii aos 5 anos a variável mais correlacionada foi B2 (r= -0,55). A B4 foi a variável com maior correlação com o volume nos plantios de E. urograndis aos 2,2 anos de idade (r= 0,75) seguido do índice Ln (SAVI_0,5) com r= 0,72. Para E. urograndis aos 4,2 anos de idade, as variáveis com maior correlação foram B2 (r= 0,67), seguido de Ln (SAVI_0,5) com r= 0,63. A partir dos coeficientes de correlação obtidos, foram modeladas equações para estimativa do volume. Para o povoamento de E. dunnii aos 5 anos, a melhor equação ajustada explicou 48% da variabilidade do volume. O povoamento de E. urograndis aos 2,2 anos obteve os melhores resultados, em que 57% da variabilidade do volume foi explicada pelas variáveis espectrais estudadas. O povoamento de E. urograndis aos 4,2 anos obteve os menores resultados, em que apenas 45% da variabilidade do volume foi explicada pelas variáveis espectrais. Conclui-se que a metodologia empregada pode ser utilizada para auxiliar na identificação de espécies a partir de imagens de satélite e novos estudos devem ser realizados para a estimativa de volume a partir de variáveis espectrais. |
author2 |
Pereira, Rudiney Soares |
author_facet |
Pereira, Rudiney Soares Goergen, Laura Camila de Godoy |
author |
Goergen, Laura Camila de Godoy |
author_sort |
Goergen, Laura Camila de Godoy |
title |
USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA |
title_short |
USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA |
title_full |
USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA |
title_fullStr |
USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA |
title_full_unstemmed |
USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA |
title_sort |
uso da reflectância de imagens landsat 5 tm na identificação de plantios de eucalyptus dunnii e eucalyptus urograndis e sua correlação com o volume de madeira |
publisher |
Universidade Federal de Santa Maria |
publishDate |
2014 |
url |
http://repositorio.ufsm.br/handle/1/8730 |
work_keys_str_mv |
AT goergenlauracamiladegodoy usodareflectanciadeimagenslandsat5tmnaidentificacaodeplantiosdeeucalyptusdunniieeucalyptusurograndisesuacorrelacaocomovolumedemadeira AT goergenlauracamiladegodoy useoflandsat5tmimagesreflectanceforidentificationeucalyptusdunniiandeucalyptusurograndisanditscorrelationwiththevolumeofwood |
_version_ |
1718643556342562816 |
spelling |
ndltd-IBICT-oai-repositorio.ufsm.br-1-87302018-05-23T17:09:23Z USO DA REFLECTÂNCIA DE IMAGENS LANDSAT 5 TM NA IDENTIFICAÇÃO DE PLANTIOS DE Eucalyptus dunnii e Eucalyptus urograndis E SUA CORRELAÇÃO COM O VOLUME DE MADEIRA USE OF LANDSAT 5 TM IMAGES REFLECTANCE FOR IDENTIFICATION Eucalyptus dunnii and Eucalyptus urograndis AND ITS CORRELATION WITH THE VOLUME OF WOOD Goergen, Laura Camila de Godoy Pereira, Rudiney Soares Arce, Julio Eduardo Weber, Liane de Souza Sensoriamento Remoto Índice de Vegetação Inventário Florestal Remote Sensing Vegetation Index Forest Inventory CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL Coordenação de Aperfeiçoamento de Pessoal de Nível Superior The objective of this study was to test the potential of satellite imagery, TM/Landsat 5, for discrimination of plantations of different ages of Eucalyptus dunnii and Eucalyptus urograndis and correlate the volume of these plantations, obtained from forest inventory, with the spectral responses. The values of spectral reflectance of the surface of the original images were recovered and after image geocoding the values of reflectance were extracted in six spectral bands TM sensor (B1, B2, B3, B4, B5 and B7) stand for the four groups studied: E. dunnii age 3 and age 5 and E. urograndis to 2.2 years and 4.2 years of age. In addition to the spectral bands vegetation indices SR, NDVI, SAVI_0.5, SAVI_0.25, MVI and GNDVI were used. To evaluate the behavior of the spectral variables for each stand, it was performed an analysis of principal components which, for the year 2009 , the variables B2 , B3 , GNDVI , B4 , B5 and B1 , were, in descending order , the most significaqnt. And for the year 2011, the most significant values were the SAVI_0.25, SAVI_0.5, B4, SR, MVI, NDVI and B2 variables, in descending order. From the discriminant analysis data of three discriminant functions (λ) to separate the four groups were generated. The structural attributes with better discriminatory power (in order of importance) were: SAVI_0.25, SAVI_0.5, B5, MVI, B7, B1 and B3. The discriminant model generated showed that functions correctly classified 100% of the cases in their predicted groups, revealing that the spectral variables were good predictors for distinguishing plantations. Correlation analysis between the biophysical variable (timber volume) was not significant for the planting of E. dunnii at 3 years old. For the planting of E. dunnii at 5 years was the most correlated variable B2 (r= -0.55). The B4 was the variable most strongly correlated with the volume in plantations of E. urograndis at 2.2 years old (r= 0.75) followed by the index Ln (SAVI_0.5) with r= 0.72. For E. urograndis at 4.2 years of age, the variables with the highest correlation were B2 (r= 0.67), followed by Ln (SAVI_0.5) with r= 0.63. From the correlation coefficients obtained, equations to estimate the volume were modeled. For the settlement of E. dunnii at 5 years, the best fitted equation explained 48% of the variability in the volume. The population of E. urograndis at 2.2 years obtained the best results, in which 57% of the variability was explained by the volume of spectral variables. The population of E. urograndis at 4.2 years obtained the lowest results, where only 45% of the variability was explained by the volume spectral variables. It was concluded that the methodology can be used to aid in species identification from satellite images and further studies should be conducted to estimate volume from spectral variables. O objetivo deste trabalho foi testar o potencial de imagem de satélite, TM/Landsat 5, na discriminação de plantios de diferentes idades de Eucalyptus dunnii e Eucalyptus urograndis e, correlacionar o volume desses plantios, obtidos a partir de inventário florestal, com as respostas espectrais. Os valores de reflectância espectral de superfície foram recuperados das imagens originais e após o georreferenciamento da imagem foram extraídos os valores das reflectâncias em seis bandas espectrais do sensor TM (B1, B2, B3, B4, B5 e B7) para os quatro povoamentos estudados: E. dunnii aos 3 anos e aos 5 anos e E. urograndis aos 2,2 anos e 4,2 anos de idade. Além das bandas espectrais foram utilizados os índices de vegetação SR, NDVI, SAVI_0,5, SAVI_0,25, MVI e GNDVI. Para avaliar o comportamento das variáveis espectrais para cada povoamento foi realizada uma análise de componentes principais em que, para o ano de 2009, as variáveis B2, B3, GNDVI, B4, B5 e B1, foram, em ordem decrescente, as mais significativas. E para o ano de 2011, os valores mais significativos corresponderam as variáveis SAVI_0,25, SAVI_0,5, B4, SR, MVI, NDVI e B2, em ordem decrescente. A partir da análise discriminante dos dados foram geradas três funções discriminantes (λ) para separação dos quatro grupos. Os atributos estruturais com melhor poder de discriminação (em ordem de importância) foram: SAVI_0,25, SAVI_0,5, B5, MVI, B7, B1 e B3. O modelo discriminante gerado demonstrou que as funções classificaram 100% dos casos em seus grupos preditos, revelando que as variáveis espectrais foram boas preditoras para distinguir os plantios. A análise de correlação entre a variável biofísica (volume de madeira) não foi significativa para o plantio de E. dunnii aos 3 anos de idade. Para o plantio de E. dunnii aos 5 anos a variável mais correlacionada foi B2 (r= -0,55). A B4 foi a variável com maior correlação com o volume nos plantios de E. urograndis aos 2,2 anos de idade (r= 0,75) seguido do índice Ln (SAVI_0,5) com r= 0,72. Para E. urograndis aos 4,2 anos de idade, as variáveis com maior correlação foram B2 (r= 0,67), seguido de Ln (SAVI_0,5) com r= 0,63. A partir dos coeficientes de correlação obtidos, foram modeladas equações para estimativa do volume. Para o povoamento de E. dunnii aos 5 anos, a melhor equação ajustada explicou 48% da variabilidade do volume. O povoamento de E. urograndis aos 2,2 anos obteve os melhores resultados, em que 57% da variabilidade do volume foi explicada pelas variáveis espectrais estudadas. O povoamento de E. urograndis aos 4,2 anos obteve os menores resultados, em que apenas 45% da variabilidade do volume foi explicada pelas variáveis espectrais. Conclui-se que a metodologia empregada pode ser utilizada para auxiliar na identificação de espécies a partir de imagens de satélite e novos estudos devem ser realizados para a estimativa de volume a partir de variáveis espectrais. 2014-10-01 2014-10-01 2014-01-22 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis GOERGEN, Laura Camila de Godoy. USE OF LANDSAT 5 TM IMAGES REFLECTANCE FOR IDENTIFICATION Eucalyptus dunnii and Eucalyptus urograndis AND ITS CORRELATION WITH THE VOLUME OF WOOD. 2014. 100 f. Dissertação (Mestrado em Recursos Florestais e Engenharia Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/8730 por 500200000003 400 500 300 300 500 a7274a7d-8dcd-466b-9a0d-c2b629e2ca88 57b78150-81f4-468b-9519-643bb06bcb38 d05f6433-5a38-4cb1-9fa2-e55168a0df8d 40423488-e9bc-4ade-8d19-46286076cba6 info:eu-repo/semantics/openAccess application/pdf Universidade Federal de Santa Maria Programa de Pós-Graduação em Engenharia Florestal UFSM BR Recursos Florestais e Engenharia Florestal reponame:Repositório Institucional da UFSM instname:Universidade Federal de Santa Maria instacron:UFSM |