A mean-field game model of economic growth : an essay in regularity theory

Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) === Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1 D...

Full description

Bibliographic Details
Main Author: Lima, Lucas Fabiano
Other Authors: Pimentel, Edgard Almeida
Language:English
Published: Universidade Federal de São Carlos 2017
Subjects:
Online Access:https://repositorio.ufscar.br/handle/ufscar/8902
id ndltd-IBICT-oai-repositorio.ufscar.br-ufscar-8902
record_format oai_dc
collection NDLTD
language English
sources NDLTD
topic Equação de Hamilton-Jacobi
Equação de Fokker- Planck
Estimativas a priori
Domínios limitados
Método adjunto não-linear
Hamilton-Jacobi equation
Fokker-Plank equation
A priori estimates
Bounded domains
Non-linear adjoint method
Mean-field games
CIENCIAS EXATAS E DA TERRA::MATEMATICA
spellingShingle Equação de Hamilton-Jacobi
Equação de Fokker- Planck
Estimativas a priori
Domínios limitados
Método adjunto não-linear
Hamilton-Jacobi equation
Fokker-Plank equation
A priori estimates
Bounded domains
Non-linear adjoint method
Mean-field games
CIENCIAS EXATAS E DA TERRA::MATEMATICA
Lima, Lucas Fabiano
A mean-field game model of economic growth : an essay in regularity theory
description Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) === Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) === Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:52Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) === Made available in DSpace on 2017-07-03T18:01:59Z (GMT). No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Previous issue date: 2016-12-20 === Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) === In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined over a bounded domain Ω ⊂ ℝd. We propose an application of these results to a model of capital and wealth accumulation. In Chapter 1, an introduction to mean-field games is presented. We also put forward some of the motivation from Economics and discuss previous developments in the theory of differential games. These comments aim at indicating the connection between mean-field games theory, its applications and the realm of Mathematical Analysis. In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed by the same stochastic differential equation. Rational means that all efforts of the agent is to maximize a payoff functional. Intelligent means that they are able to solve an optimal control problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic derivation of the mean-field games system, which is summarized in a Verification Theorem; this gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation (FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together with some regularity results. In Chapter 3, a specific optimal control problem is described and the associated MFG is presented. This MFG is prescribed in a bounded domain Ω ⊂ ℝd, which introduces substantialadditional challenges from the mathematical view point. This is due to estimates for the solutionsat the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: theso-called Hopf-Lax formula and the First Order Estimate. In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The relevance of studying MFG in a bounded domain then becomes clear. In light of the results obtained in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates. Three appendices close this thesis. They gather elementary material on Stochastic Calculus and Functional Analysis. === Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas mean-field games (MFG), definidos em domínios limitados Ω ⊂ ℝd. Tais estimativas são aplicadas em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital. No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games. Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construídos por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir. No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtémse a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns resultados de regularidade. No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a respectiva derivação heurística culminando na descrição de um MFG com condições não periódicas na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com estimativas para os termos de fronteira com normas em Lp. ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada principalmente pelo rigor e clareza da Matemática em tais circunstâncias. No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax e de Primeira Ordem. Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material elementar sobre Cálculo Estocástico e Análise Funcional.
author2 Pimentel, Edgard Almeida
author_facet Pimentel, Edgard Almeida
Lima, Lucas Fabiano
author Lima, Lucas Fabiano
author_sort Lima, Lucas Fabiano
title A mean-field game model of economic growth : an essay in regularity theory
title_short A mean-field game model of economic growth : an essay in regularity theory
title_full A mean-field game model of economic growth : an essay in regularity theory
title_fullStr A mean-field game model of economic growth : an essay in regularity theory
title_full_unstemmed A mean-field game model of economic growth : an essay in regularity theory
title_sort mean-field game model of economic growth : an essay in regularity theory
publisher Universidade Federal de São Carlos
publishDate 2017
url https://repositorio.ufscar.br/handle/ufscar/8902
work_keys_str_mv AT limalucasfabiano ameanfieldgamemodelofeconomicgrowthanessayinregularitytheory
AT limalucasfabiano meanfieldgamemodelofeconomicgrowthanessayinregularitytheory
_version_ 1718651395039559680
spelling ndltd-IBICT-oai-repositorio.ufscar.br-ufscar-89022018-05-23T20:12:58Z A mean-field game model of economic growth : an essay in regularity theory Lima, Lucas Fabiano Pimentel, Edgard Almeida Equação de Hamilton-Jacobi Equação de Fokker- Planck Estimativas a priori Domínios limitados Método adjunto não-linear Hamilton-Jacobi equation Fokker-Plank equation A priori estimates Bounded domains Non-linear adjoint method Mean-field games CIENCIAS EXATAS E DA TERRA::MATEMATICA Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-06-27T20:42:50Z No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:46Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-07-03T17:56:52Z (GMT) No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Made available in DSpace on 2017-07-03T18:01:59Z (GMT). No. of bitstreams: 1 DissLFL.pdf: 818058 bytes, checksum: a45e8f4dbdc692c6f31fde1d45f6574d (MD5) Previous issue date: 2016-12-20 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) In this thesis, we present a priori estimates for solutions of a mean-field game (MFG) defined over a bounded domain Ω ⊂ ℝd. We propose an application of these results to a model of capital and wealth accumulation. In Chapter 1, an introduction to mean-field games is presented. We also put forward some of the motivation from Economics and discuss previous developments in the theory of differential games. These comments aim at indicating the connection between mean-field games theory, its applications and the realm of Mathematical Analysis. In Chapter 2, we present an optimal control problem. Here, the agents are supposed to be undistinguishable, rational and intelligent. Undistinguishable means that every agent is governed by the same stochastic differential equation. Rational means that all efforts of the agent is to maximize a payoff functional. Intelligent means that they are able to solve an optimal control problem. Once we describe this (stochastic) optimal control problem, we produce a heuristic derivation of the mean-field games system, which is summarized in a Verification Theorem; this gives rise to the Hamilton-Jacobi equation (HJ). After that, we obtain the Fokker-Plank equation (FP). Finally, we present a representation formula for the solutions to the (HJ) equation, together with some regularity results. In Chapter 3, a specific optimal control problem is described and the associated MFG is presented. This MFG is prescribed in a bounded domain Ω ⊂ ℝd, which introduces substantialadditional challenges from the mathematical view point. This is due to estimates for the solutionsat the boundary in Lp. The rest of the chapter puts forward two well known tips of estimates: theso-called Hopf-Lax formula and the First Order Estimate. In Chapter 4, the wealth and capital accumulation mean-field game model is presented. The relevance of studying MFG in a bounded domain then becomes clear. In light of the results obtained in Chapter 3, we close Chapter 4 with the Hopf-Lax formula, and the First Order estimates. Three appendices close this thesis. They gather elementary material on Stochastic Calculus and Functional Analysis. Nesta dissertação são apresentadas algumas estimativas a priori para soluções de sistemas mean-field games (MFG), definidos em domínios limitados Ω ⊂ ℝd. Tais estimativas são aplicadas em um modelo mean-field específico, que descreve o acúmulo de riqueza e capital. No Capítulo 1, é apresentada uma breve introdução histórica sobre os mean-field games. Nesta introdução, exploramos sua relação com a teoria dos jogos, cujos alicerces foram construídos por economistas e matemáticos ao longo do século XX. O objetivo do capítulo é transmitir. No Capítulo 2, apresentamos um problema de controle ótimo em que cada agente é suposto ser indistinguível, racional e inteligente. Indistinguível no sentido de que cada um é governado pela mesma equação diferencial estocástica. Racional no sentido de que todos os esforços do agente são no sentido de maximizar um funcional de recompensa e, inteligente no sentido de que são capazes de resolver um problema de controle ótimo. Descreve-se este problema de controle ótimo, e apresenta-se a derivação heurística dos mean-field games; obtém-se através de um Teorema de Verificação, a equação de Hamilton-Jacobi (HJ) associada, e em seguida, obtémse a equação de Fokker-Planck. De posse destas equações, apresentamos alguns resultados preliminares, como uma fórmula de representação para soluções da equação de HJ e alguns resultados de regularidade. No Capítulo 3, descreve-se um problema específico de controle ótimo e apresenta-se a respectiva derivação heurística culminando na descrição de um MFG com condições não periódicas na fronteira; esta abordagem é original na literatura de MFG. O restante do capítulo é dedicado à exposição de dois tipos bem conhecidos de estimativas: a fórmula de Hopf-Lax e estimativa de Primeira Ordem. Uma observação relevante, é a de que o trabalho em obter-se estimativas a priori é aumentado substancialmente neste caso, devido ao fato de lidarmos com estimativas para os termos de fronteira com normas em Lp. ao leitor, as origens da Teoria Econômica contemporânea, que surgem à partir da utilização da Matemática na formulação e resolução de problemas econômicos. Tal abordagem é motivada principalmente pelo rigor e clareza da Matemática em tais circunstâncias. No Capítulo 4, apresenta-se o modelo de jogo do tipo mean-field de acúmulo de capital e riqueza, o que deixa claro a relevância do estudo dos MFG em um domínio limitado. À luz dos resultados obtidos no Capítulo 3, encerramos o Capítulo 4 com as estimativas do tipo Hopf-Lax e de Primeira Ordem. Três apêndices encerram o texto desta dissertação de mestrado; estes reúnem material elementar sobre Cálculo Estocástico e Análise Funcional. 2017-07-03T18:01:59Z 2017-07-03T18:01:59Z 2016-12-20 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis https://repositorio.ufscar.br/handle/ufscar/8902 eng info:eu-repo/semantics/openAccess Universidade Federal de São Carlos Câmpus São Carlos Programa de Pós-graduação em Matemática UFSCar reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos instacron:UFSCAR