Folheações riemannianas e geodésicas fechadas em orbifolds

Submitted by Caroline Periotto (carol@ufscar.br) on 2016-10-03T20:28:29Z No. of bitstreams: 1 DissCASfr.pdf: 1220679 bytes, checksum: 34316f04f7e4dda72c5fb929a51099d8 (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:18:17Z (GMT) No. of bitstreams: 1...

Full description

Bibliographic Details
Main Author: Souza, Cristiano Augusto de
Other Authors: Barreto, Alexandre Paiva
Language:Portuguese
Published: Universidade Federal de São Carlos 2016
Subjects:
Online Access:https://repositorio.ufscar.br/handle/ufscar/8035
Description
Summary:Submitted by Caroline Periotto (carol@ufscar.br) on 2016-10-03T20:28:29Z No. of bitstreams: 1 DissCASfr.pdf: 1220679 bytes, checksum: 34316f04f7e4dda72c5fb929a51099d8 (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:18:17Z (GMT) No. of bitstreams: 1 DissCASfr.pdf: 1220679 bytes, checksum: 34316f04f7e4dda72c5fb929a51099d8 (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:18:22Z (GMT) No. of bitstreams: 1 DissCASfr.pdf: 1220679 bytes, checksum: 34316f04f7e4dda72c5fb929a51099d8 (MD5) === Made available in DSpace on 2016-10-20T19:18:28Z (GMT). No. of bitstreams: 1 DissCASfr.pdf: 1220679 bytes, checksum: 34316f04f7e4dda72c5fb929a51099d8 (MD5) Previous issue date: 2016-03-04 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) === The present thesis is devoted to the study of closed geodesics in some types of orbifolds. First, we present the notion of Riemannian foliation and their equivalent definitions using foliation atlas and Riemannian submersions. Aiming to understand the leaf space of certain foliations, we introduce the concept of orbifold. Also, the notion of orbifolds will be addressed via pseudogroups. For compact Riemannian good orbifolds, we will prove the existence of non-trivial closed geodesics. The main objective of this work is to obtain closed geodesics in compact Riemannian orbifolds by employing the shortening process with respect to Riemannian foliations. Following the approach of Alexandrino and Javaloyes [5], we also discuss the existence of closed geodesics in the leaf spaces for some classes of singular Riemannian foliations. === A presente dissertação é devotada ao estudo de geodésicas fechadas em alguns tipos de orbifolds. Primeiro, é apresentada a noção de folheação Riemanniana bem como suas equivalentes definições via atlas folheados e submersões Riemannianas. Visando compreender o espaço das folhas de certas folheações, é introduzido o conceito de orbifold. Também será abordada a noção de orbifolds via pseudogrupos. Para orbifolds riemannianos compactos bons, é provada a existência de geodésicas fechadas de comprimento positivo. O principal objetivo deste trabalho é empregar o processo de encurtamento com relação às folheações Riemannianas para obter geodésicas fechadas em orbifolds riemannianos compactos. Seguindo a abordagem de Alexandrino e Javaloyes [5], também discutimos sobre a existência de geodésicas fechadas no espaço das folhas de algumas classes de folheações Riemannianas singulares.