Summary: | Submitted by Luciana Sebin (lusebin@ufscar.br) on 2016-09-14T18:52:44Z
No. of bitstreams: 1
TeseLJC.pdf: 3758058 bytes, checksum: 4551fb3e08abee5796d1f863288fd5ae (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T14:23:21Z (GMT) No. of bitstreams: 1
TeseLJC.pdf: 3758058 bytes, checksum: 4551fb3e08abee5796d1f863288fd5ae (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T14:23:30Z (GMT) No. of bitstreams: 1
TeseLJC.pdf: 3758058 bytes, checksum: 4551fb3e08abee5796d1f863288fd5ae (MD5) === Made available in DSpace on 2016-09-15T14:23:43Z (GMT). No. of bitstreams: 1
TeseLJC.pdf: 3758058 bytes, checksum: 4551fb3e08abee5796d1f863288fd5ae (MD5)
Previous issue date: 2016-02-04 === Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) === Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) === In this work it was evaluated, firstly, the performance of four impellers configurations in the enzymatic hydrolysis of sugarcane bagasse. The configurations evaluated were: (1): Rushton turbine - Rushton turbine; (2): Elephant ear down-pumping and Rushton turbine; (3): Rushton turbine and Elephant ear up-pumping; (4): Elephant ear downpumping and Elephant ear up-pumping. The choice of the best impeller configuration was based in mixing efficiency, characterized by the mixing time. The configurations were also evaluated considering the conversion of cellulose to glucose, power
consumption as well as the rheological behavior during hydrolysis. The hydrolysis experiments were carried out in batch stirred tank reactor (3 L) using 10% w/v of solids (pH 4.8; 50°C; 470 rpm), 10 FPU· g-1 biomassa for 96 h. The configuration (4) showed the lowest mixing time and energy efficiency values (ratio of conversion of cellulose to glucose and total energy consumption) of 78.9%·MJ-1. Further, to get a high concentration of glucose associated with low power consumption, it was investigated two operating modes: batch and fed-batch. The strategies evaluated were: E1 [20%]; E2
[10(E)+5+5%]; E3 [5(E)+5+5+5%]; E4 [5(E)+5+5+5%], and E5 5(E)+5(E)+5(E)+5(E)%]. The best energy efficiency was obtained for the E5 strategy in which substrate and enzyme were added simultaneously (0.35 kgglicose·kWh-1). This value was 52% higher than that obtained in the single batch operation (E1). In continuation of the work were carried out enzymatic hydrolysis of exploded and hydrothermal bagasse and cane straw submitted to hydrothermal pretreatment. The experiments were carried out under the conditions: solids loading of 10 (w/v), pH 4.8; 50 ° C; 470 rpm and 10 FPU·g-1 biomass for 96 h. The efficiency obtained in the enzymatic hydrolysis of steam explosion sugarcane bagasse proved to be 41 and 46% higher than the hydrolysis of hydrothermally pretreated sugarcane straw and bagasse,
respectively. Finally, a scale-up protocol with a scale factor equal to 1000 was proposed. It was analyzed the maintenance of two parameters on larger scale: the constancy of the mixing time (tm) and the constancy of the power consumption per unit volume (P/V). In turn, maintenance P/V parameter constant, the mixing time and the new scale power consumption (3000L) were approximately 4 and 1000 times higher, respectively, than those values obtained in the smaller scale (3L). === Neste trabalho avaliou-se, primeiramente, o desempenho de quatro configurações de impelidores na hidrólise enzimática do bagaço explodido de cana-de-açúcar. As configurações avaliadas foram: (1): turbina Rushton – turbina Rushton; (2): Elephant
ear down-pumping e turbina Rushton; (3): turbina Rushton e Elephant ear up-pumping; (4): Elephant ear down-pumping e Elephant ear up-pumping. A escolha da melhor configuração de impelidores foi baseada na eficiência de mistura, caracterizada pelo tempo de mistura. As configurações também foram avaliadas considerando a conversão de celulose em glicose, o consumo de potência, bem como o comportamento reológico durante a hidrólise. Os experimentos de hidrólise em batelada foram realizados em reator tipo tanque agitado (3 L) utilizando 10% m/v de sólidos (pH 4,8; 50°C; 470 rpm),
10 FPU·g-1 biomassa por 96 h. A configuração (4) apresentou os menores valores de tempo de mistura e uma eficiência energética de 78,9 %·MJ-1. Com o intuito de obter-se alta concentração de glicose associada a um baixo consumo de potência, investigou-se dois modos de operação: batelada e batelada alimentada. As estratégias avaliadas foram: E1
[20%]; E2 [10(E)+5+5%]; E3 [5(E)+5+5+5%]; E4 [5(E)+5+5+5%] e E5 [5(E)+5(E)+5(E)+5(E)%]. Os melhores resultados foi obtido na estratégia E5, obtendo uma eficiência energética de 0,35 kgglicose∙kWh-1. Este valor foi 52% maior do que o
obtido na operação em batelada simples (E1). Na continuação do trabalho, foi realizada a hidrólise enzimática do bagaço explodido e hidrotérmico e a palha de cana submetida ao pré-tratamento hidrotérmico. Os experimentos foram realizados em um reator de 3 L nas seguintes condições: carga de sólidos de 10% m/v (pH 4,8; 50°C, 470rpm ) e 10 FPU·g-1
biomassa por 96 h. A eficiência energética obtida na hidrólise do bagaço explodido mostrou-se 41 e 46 % superior aos pré-tratados de bagaço e palha hidrotermicamente, respectivamente. Finalmente, foi proposto um protocolo de aumento de escala com um fator de escala igual a 1000. Analisou a manutenção de dois parâmetros na escala maior: tempo de mistura (tm) e do consumo de potência por unidade de volume (P/V). Com a manutenção do parâmetro P/V constante, o tempo de mistura e consumo de potência da nova escala (3000L) foram aproximadamente 4 e 1000 vezes maiores, respectivamente,
do que o obtido na escala menor escala (3L). === FAPESP: 2011/23807-1
|