Avaliação da biocompatibilidade e do efeito no reparo ósseo de um scaffold manufaturado a partir de um material vítreo fibroso

Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-09-14T14:47:04Z No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:55:56Z (GMT) No. of bi...

Full description

Bibliographic Details
Main Author: Armelin, Paulo Roberto Gabbai
Other Authors: Renno, Ana Cláudia Muniz
Language:Portuguese
Published: Universidade Federal de São Carlos 2016
Subjects:
Online Access:https://repositorio.ufscar.br/handle/ufscar/7182
Description
Summary:Submitted by Bruna Rodrigues (bruna92rodrigues@yahoo.com.br) on 2016-09-14T14:47:04Z No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:55:56Z (GMT) No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5) === Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-15T13:56:08Z (GMT) No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5) === Made available in DSpace on 2016-09-15T13:56:17Z (GMT). No. of bitstreams: 1 TesePRGA.pdf: 5283158 bytes, checksum: c57ad9ff767d07147f784d369b1084cf (MD5) Previous issue date: 2015-03-27 === Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) === Millions of bone fractures occur annually worldwide and the consequent bone repair process is complex, involving many biological events until it reaches the restoration of the tissue integrity. During that process some problems can occur due to delays in the bone healing, which does not allow the proper joining of the tissue. Thus, it is necessary to search for new technologies that work in restoring the integrity of the bone tissue and that promote the osteoconduction and the osteoinduction. In this sense, the use of bioactive materials in the bone repair process is a promising alternative. Following this, two studies (I and II) were developed in order to investigate a new fibrous glassy scaffold, and these studies were based in three lines of research: (i) the characterization of the new fibrous glassy scaffold; (ii) the biocompatibility evaluation of this bioactive material; (iii) the analysis of the biological performance of this new scaffold in the bone repair. More specifically, in the study I the developed scaffolds were characterized in terms of porosity, mineralization and morphological features. Additionally, fibroblast and osteoblast cells were seeded in contact with extracts of the scaffolds to assess cell proliferation and genotoxicity after 24, 72 and 144 h. Finally, scaffolds were placed subcutaneously in rats for 15, 30 and 60 days. In regards to study II, the morphological structure of the scaffolds upon incubation in phosphate buffered saline (PBS) (via scanning electron microscope) was assessed after 1, 7 and 14 days and, also, the in vivo tissue response to the new biomaterial was evaluated using implantation in rat tibial defects. The histopathological, immunohistochemistry and biomechanical analyzes after 15, 30 and 60 days of implantation were performed to investigate the effects of the material on bone repair. The scaffolds presented interconnected porous structures (porosity of ~75%), and the precursor bioglass could mineralize a hydroxycarbonate apatite (HCA) layer in SBF after only 12 h. The PBS incubation indicated that the fibers of the glassy scaffold degraded over time. With regards to the biological investigations, the biomaterial elicited increased fibroblast and osteoblast cell proliferation, and no DNA damage was observed. The in vivo experiment showed degradation of the biomaterial over time, with soft tissue ingrowth into the degraded area and the presence of multi-nucleated giant cells around the implant. At day 60, the scaffolds were almost completely degraded, and an organized granulation tissue filled the area. Additionally, the histological analysis of the implants in the bone defects revealed a progressive degradation of the material with increasing implantation time and also its substitution by granulation tissue and woven bone. Histomorphometry showed a higher amount of newly formed bone area in the control group (CG) compared to the biomaterial group (BG) 15 days post-surgery. After 30 and 60 days, CG and BG showed a similar amount of newly formed bone. The novel biomaterial enhanced the expression of RUNX-2 and RANK-L, and also improved the mechanical properties of the tibial callus at day 15 after surgery. These results indicate that the new fibrous glassy scaffold is bioactive, non-cytotoxic, biocompatible and promising for using in bone tissue engineering. === Milhões de fraturas ósseas ocorrem anualmente no mundo todo e o processo de reparo é complexo, envolvendo muitos eventos biológicos até que se atinja a restauração da integridade do tecido. Problemas nessa regeneração podem ocorrer, levando a não união óssea. Assim, faz-se necessária a busca por novas tecnologias que atuem na restauração da integridade do tecido ósseo e promovam a osteocondução e a osteoindução. Para tanto, uma alternativa promissora é a utilização de materiais bioativos para o reparo ósseo. Seguindo essa linha, foram realizados dois estudos (I e II) acerca de um novo scaffold vítreo fibroso, sendo estes estudos baseados em três linhas de investigação: (i) caracterização do novo scaffold vítreo fibroso; (ii) avaliação da biocompatibilidade desse material bioativo e (iii) análise do desempenho biológico desse novo scaffold no reparo ósseo. Mais especificamente, no estudo I foi feita a caracterização dos scaffolds em termos de porosidade, mineralização e características morfológicas. Adicionalmente, fibroblastos e osteoblastos foram cultivados em contato com extratos dos scaffolds para avaliação da proliferação celular e genotoxicidade após 24, 72 e 144 h. Finalmente, nesse mesmo estudo, os scaffolds foram implantados subcutaneamente em ratos por 15, 30 e 60 dias. No que se refere ao estudo II, foram feitas avaliações da estrutura morfológica dos scaffolds (via microscopia eletrônica de varredura) imersos em tampão fosfato salino (PBS) após 1, 7 e 14 dias, além de investigações do efeito no reparo ósseo do novo scaffold utilizando implantação do mesmo em defeitos ósseos tibiais em ratos. Análises histopatológicas, imunohistoquímicas e biomecânicas foram realizadas 15, 30 e 60 dias após a implantação. Os scaffolds apresentaram estruturas altamente porosas (porosidade de ~75%) e interconectadas, e o biovidro precursor mineralizou uma camada de hidroxicarbonatoapatita (HCA) em SBF (simulated body fluid) após o curto período de 12 h. A incubação em PBS indicou que as fibras do scaffold apresentaram sinais de degradação com o passar do tempo. Sobre os testes biológicos, o novo biomaterial levou a um aumento da proliferação de fibroblastos e osteoblastos, e nenhum dano ao DNA foi observado. Os experimentos de implantação do material no subcutâneo indicaram degradação do biomaterial acompanhada do crescimento interno de tecido mole e presença de células gigantes multinucleadas ao redor do implante. Após 60 dias, os scaffolds estavam quase completamente absorvidos e um tecido de granulação organizado preenchia a área de implantação. Adicionalmente, as análises histológicas dos scaffolds em defeitos ósseos revelaram uma degradação progressiva do biomaterial e substituição do mesmo por tecido de granulação e tecido ósseo neoformado. A histomorfometria mostrou uma maior quantidade de osso neoformado no grupo controle (CG) comparado ao grupo biomaterial (BG) 15 dias após a cirurgia. No entanto, depois de 30 e 60 dias, CG e BG apresentaram quantidades similares de osso neoformado. Além disso, o novo biomaterial aumentou a expressão de RUNX-2 e RANK-L, e também melhorou as propriedades mecânicas do calo tibial 15 dias após a cirurgia. Os resultados indicam que o novo scaffold vítreo fibroso é bioativo, não-citotóxico, biocompatível e promissor para utilização na engenharia do reparo ósseo.