Summary: | Made available in DSpace on 2016-06-02T20:36:35Z (GMT). No. of bitstreams: 1
4028.pdf: 7001802 bytes, checksum: 951e4bcf20cebafc6e7c000261dbe951 (MD5)
Previous issue date: 2011-12-09 === Universidade Federal de Sao Carlos === Stainless steel has been the subject of numerous studies due to technological and economic importance. Features such as durability, corrosion and high temperatures resistances confer to the steel relevant applications in several industrial sectors. Thus, the study of methodologies for chemical and electrochemical polishing, instead of mechanical polishing, has been increasing due to improved surface quality of these steels by not introducing contaminants and/or tension in the superficial layers of the metal, making them microscopically smooth, passive and anticorrosive. Therefore, in this work, the process of electrochemical polishing of AISI 304 stainless steel in solutions of concentrated sulfuric acid (H2SO4 also used in the coloring process of these steels) and phosphoric-sulfuric mixed acids (H3PO4 and H2SO4 2:1) containing glycerol was studied using the galvanostatic method (constant current). Factorial design was used to optimize the main process parameters such as concentration of the acid solution, current density, temperature, electrolysis time and additive content. The surface quality of steel samples was evaluated by spectral reflectance. Some steel samples electropolished or not (steel samples as received) were also characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The statistical model generated for the electropolishing process of steel in solution of H2SO4 did not fit well (R2 = 0.75) to the experimental results. Among all the electrolysis, the one that produced a steel surface with the highest percentage value of reflectance (R = 71%) was performed in the following experimental conditions: [H2SO4] = 9 mol L-1, i = 0.6 A cm-2, θ = 55 ° C and t = 7.5 min. In these conditions the corrosion rate of steel samples was 0.33 mm h-1 and the process energy consumption was 3.0 kW h m-2 for an average cell potential of 4.0 V. On the other hand, the statistical model generated for the electropolishing process of steel in solution of H3PO4 and H2SO4 2:1 containing glycerol fitted reasonable (R2 = 0.93) to the experimental results. The punctual optimal conditions were: H2SO4 and H3PO4 2:1 containing 25% glycerol and kept at 30 ° C, i = 1.0 A cm-2 and t = 8 min. In these conditions, the surfaces of the steel samples showed R values of 70 %. The corrosion rate of steel samples was 0.19 mm h-1 and the process energy consumption was 23 kW h m-2 for an average cell potential of 17 V. From AFM images, the calculated values of average surface roughness factor (Ra) were 139 ± 20 nm for steel samples as received (R = 58%) and between 20 and 75 nm for steel samples electropolished. The SEM images for these latter samples revealed the different crystallographic orientations of the AISI 304 austenitic stainless steel. === O aço inoxidável tem sido objeto de inúmeros estudos devido à importância tecnológica e econômica. Características como durabilidade, resistência à corrosão e às temperaturas elevadas conferem ao aço importantes aplicações em diversos setores industriais. Dessa forma, o estudo de metodologias de polimento químico e eletroquímico, ao invés de polimento mecânico, vem aumentando devido à melhora da qualidade superficial desses aços por não introduzir contaminantes e/ou tensões nas camadas superficiais do metal, deixando-as microscopicamente lisas, passivas e anticorrosivas. Portanto, neste trabalho foi estudado, o processo de polimento eletroquímico do aço inoxidável AISI 304 em soluções de ácido sulfúrico concentrado (H2SO4 também utilizada na coloração destes aços) e formada pela mistura dos ácidos fosfórico e sulfúrico (H3PO4 e H2SO4 2:1) contendo glicerol, utilizando o método galvanostático (a corrente constante). O planejamento experimental foi utilizado para otimizar os principais parâmetros do processo como concentração da solução ácida, densidade de corrente, temperatura, tempo de eletrólise e teor de aditivo. A qualidade da superfície das amostras de aço foi avaliada por refletância espectral. Algumas amostras de aço eletropolidas ou não (amostra de aço como recebido) também foram caracterizadas por microscopia de força atômica (AFM) e microscopia eletrônica de varredura (MEV). A modelagem estatística gerada para o processo de eletropolimento do aço em solução de H2SO4 não se ajustou bem (R2 = 0,75) aos resultados experimentais. Dentre todas as eletrólises, aquela que produziu uma superfície do aço com o maior valor de porcentagem de refletância (R = 71 %) foi realizada nas seguintes condições experimentais: [H2SO4] = 9 mol L-1, i = 0,6 A cm-2, θ = 55 ºC e t = 7,5 min. Nestas condições, a taxa de corrosão das amostras de aço foi de 0,33 mm h-1 e o consumo energético do processo de 3,0 kW h m-2 para um potencial de célula médio de 4,0 V. Por outro lado, a modelagem estatística gerada para o processo de eletropolimento do aço em solução de H3PO4 e H2SO4 2:1 contendo glicerol se ajustou razoavelmente bem (R2 = 0,93) aos resultados experimentais. As condições pontuais ótimas previstas foram: H3PO4 e H2SO4 2:1 contendo 25 % V/V de glicerol e mantida a 30 ºC, i = 1,0 A cm-2 e t = 8 min. Nestas condições, as superfícies das amostras de aço apresentaram valores de R de 70 %. A taxa de corrosão foi de 0,19 mm h-1 e o consumo energético do processo de 23 kW h m-2 para um potencial de célula médio de 17 V. A partir de imagens de AFM, os valores calculados de fator de rugosidade média superficial (Ra) foram de 139 ± 20 nm para amostras de aço como recebido (R = 58 %) e entre 20 e 75 nm para amostras de aço eletropolidas. Imagens obtidas por MEV para estas últimas amostras revelaram as diferentes orientações cristalográficas do aço inoxidável austenítico AISI 304.
|