Determinação de cádmio, chumbo, tálio e zinco em águas e alimentos por espectrometria de absorção atômica com injeção de amostra em forno aquecido por chama (BIFF-AAS).

Made available in DSpace on 2016-06-02T20:35:05Z (GMT). No. of bitstreams: 1 TesePCA.pdf: 4792122 bytes, checksum: 0bc345483e36af26b9f28caa219067fa (MD5) Previous issue date: 2005-07-01 === A flame atomic absorption method based on the introduction of a liquid sample jet into a heated tube placed...

Full description

Bibliographic Details
Main Author: Aleixo, Poliana Carolina
Other Authors: Krug, Francisco José
Format: Others
Language:Portuguese
Published: Universidade Federal de São Carlos 2016
Subjects:
Online Access:https://repositorio.ufscar.br/handle/ufscar/6352
Description
Summary:Made available in DSpace on 2016-06-02T20:35:05Z (GMT). No. of bitstreams: 1 TesePCA.pdf: 4792122 bytes, checksum: 0bc345483e36af26b9f28caa219067fa (MD5) Previous issue date: 2005-07-01 === A flame atomic absorption method based on the introduction of a liquid sample jet into a heated tube placed in the burner head of the spectrometer was evaluated for the determination of Cd, Pb, Tl and Zn in foods and waters. The beam injection flame furnace system consisted of a piston pump, a Rheodyne valve for sample injection, PEEK tube transmission lines (0.7 mm inner diameter), a nozzle made from PEEK with a channel (50 µm inner diameter; 200 µm long) and an integrated filter, for liquid jet generation. The flame furnace consisted of a Ni-base superalloy tube (1 cm inner diameter; 10 cm long) positioned in the flame, held by ceramic pins fixed at both ends of the burner head. The effects of sample carrier flow rate (1 to 2 ml min-1), sample injection volume, composition of fuel/oxidant mixture (C2H2 / air), total flow rate of gaseous mixture, diameter and number of holes in the tube atomizer on analytes atomization are presented. The importance of flame gases introduced through the holes into the tube atomizer was also investigated. For better understanding the atomization process, an optical pyrometer was used to measure external tube wall temperature, and the two lines method with Sn and Pb thermometric atomic lines (SnI 286.3 and 284.0 nm; PbI 368.3 and 280.2 nm) for measuring the gas phase temperature inside the tube. Entrance of flame gases into the tube atomizer was decisive for the atomization of Cd, Pb, Tl, and Zn. On the other hand, it was demonstrated that the gas phase temperature drops from ca. 1600 °C to 1200 °C when the water jet is introduced into the atomizer. This explains why this method is restricted to more volatile elements. The effect of concomitants usually present in food and water samples was negligible in spectrometers furnished with D2 background correction system. Without background correction, only Na in high concentrations (> 1000 mg l-1) showed significant spectral interference. Limits of detection were 0.65 µg l-1 Cd, 32.0 µg l-1 Pb, 8.0 µg l-1 Tl e 5.0 µg l-1 Zn. The relative standard deviation of measurements (n=3) varied from 3 to 9% and up to 60 samples can be analyzed per hour. In comparison with flame atomic absorption spectrometry with sample introduction by pneumatic nebulization, the limits of detection with BIFF-AAS improved 26 times for Cd, 20 times for Pb, 4 times for Zn and 12 times for Tl. Results obtained for determination of Cd, Pb, and Zn in water and food samples by BIFF-AAS showed good agreement with those obtained by graphite furnace atomic absorption spectrometry, and no differences were found between results at 95% confidence level by the t-test, when using certified reference materials. Recoveries of thallium spiked in food and water samples were in the 98-102% range. For food analysis the BIFF-AAS system showed compatibility with centrifuged slurry food extracts obtained by ultrasound assisted extraction, as well as with the acid digests. Finally, this simple method can be successfully used for the determination of Cd and Pb in foods (useful for checking WHO Codex Alimentarius Commission criteria). It can also be recommended for the determination of Cd and Pb (except classes 1 and 2) in waters, following the CONAMA (National Environmental Council of Brazil) legislation. === Avaliou-se um sistema de atomização baseado na introdução da amostra na forma de um jato líquido em um tubo atomizador posicionado sobre o queimador de um espectrômetro de absorção atômica com chama. O sistema de injeção de amostra em forno aquecido por chama (BIFFAAS) foi constituído por uma bomba de pistão para transporte da solução carregadora e da amostra, uma válvula Rheodyne para injeção da amostra, tubos de transmissão de PEEK (0,7 mm d.i.) e um nozzle (restritor) com filtro integrado, feito de PEEK, com canal (50 µm d.i. e 200 µm comprimento) para geração do jato de líquido. O tubo atomizador consistiu de um tubo de super liga de níquel (1 cm d.i. e 10 cm comprimento) colocado em um suporte com pinos de cerâmica fixados nas laterais do queimador. Os efeitos da vazão de solução carregadora (1 a 2 ml min-1), volume de injeção de amostra, composição da mistura dos gases combustível e oxidante (C2H2/ar), vazão total da mistura gasosa, diâmetro e número de furos no tubo atomizador foram criticamente investigados na atomização dos analitos. A importância da entrada dos gases da chama no interior do tubo atomizador também foi avaliada. Para melhor entendimento dos processos de atomização, utilizou-se um pirômetro ótico para medidas de temperatura na parede externa do tubo e o método das duas linhas com pares termométricos de Sn e Pb (SnI 286,3 e 284,0 nm; PbI 386,3 e 280,2 nm) para medidas de temperatura na fase vapor dentro do tubo. A entrada dos gases da chama no interior do tubo atomizador foi decisiva para a atomização de Cd, Pb, Tl e Zn. Por outro lado, verificou-se que a temperatura da fase vapor diminui de, aproximadamente, 1500 oC para 1100 oC quando a solução carregadora é introduzida no tubo, limitando o uso deste método de atomização apenas para elementos voláteis. O efeito de concomitantes, geralmente presentes em amostras de águas e alimentos, foi insignificante em espectrômetros equipados com sistema de correção de fundo com lâmpada de D2. No espectrômetro sem corretor de fundo, apenas o Na em concentrações acima de 1000 mg l-1 apresentou interferência espectral significativa. Os limites de detecção obtidos foram 0,65 µg l-1 Cd, 32,0 µg l-1 Pb, 8,0 µg l-1 Tl e 5,0 µg l-1 Zn. O coeficiente de variação das medidas (n=3) foi de 3 a 9 % e o sistema possibilita a análise de 60 amostras h-1 após o preparo. Em comparação com a espectrometria de absorção atômica com chama com introdução de amostra por nebulização pneumática, os limites de detecção com o sistema BIFF-AAS melhoraram 26 vezes para Cd, 20 vezes para Pb, 4 vezes para Zn e 12 vezes para Tl. Os resultados obtidos na determinação de Cd, Pb e Zn em amostras de águas e alimentos por BIFF-AAS apresentaram boa concordância com os obtidos por espectrometria de absorção atômica com atomização eletrotérmica em forno de grafite e nenhuma diferença foi encontrada entre os resultados obtidos (teste-t ao nível de 95%) e os valores certificados de materiais de referência certificados. A recuperação de Tl adicionado às amostras de águas e alimentos ficou entre 98 e 102%. Finalmente, esse método simples pode ser utilizado com sucesso na determinação de Cd e Pb em alimentos, tanto em digeridos como em extratos obtidos por sonicação de supensões, pois atende aos critérios recomendados pela Organização Mundial de Saúde (Codex Alimentarius Comission). Para águas, o sistema atende as exigências do Conselho Nacional do Meio Ambiente para Cd em todas as classes e para Pb a partir da classe 3.