Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS

Made available in DSpace on 2016-06-02T20:15:28Z (GMT). No. of bitstreams: 1 5160.pdf: 6005480 bytes, checksum: 6aae866e51fab054ffc455e4b0479f2f (MD5) Previous issue date: 2013-02-25 === Financiadora de Estudos e Projetos === Considering the search for miniaturization of electronic devices, the de...

Full description

Bibliographic Details
Main Author: Nascimento, William Junior do
Other Authors: Eiras, José Antônio
Format: Others
Language:Portuguese
Published: Universidade Federal de São Carlos 2016
Subjects:
PFN
PFW
Online Access:https://repositorio.ufscar.br/handle/ufscar/4960
id ndltd-IBICT-oai-repositorio.ufscar.br-ufscar-4960
record_format oai_dc
collection NDLTD
language Portuguese
format Others
sources NDLTD
topic Física do estado sólido
Cerâmicas multiferróicas
Materiais nanoestruturados
Niobato de ferro e chumbo (PFN)
Nanostructured ceramics
Spark Plasma Sintering
PFN
PFW
CIENCIAS EXATAS E DA TERRA::FISICA
spellingShingle Física do estado sólido
Cerâmicas multiferróicas
Materiais nanoestruturados
Niobato de ferro e chumbo (PFN)
Nanostructured ceramics
Spark Plasma Sintering
PFN
PFW
CIENCIAS EXATAS E DA TERRA::FISICA
Nascimento, William Junior do
Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS
description Made available in DSpace on 2016-06-02T20:15:28Z (GMT). No. of bitstreams: 1 5160.pdf: 6005480 bytes, checksum: 6aae866e51fab054ffc455e4b0479f2f (MD5) Previous issue date: 2013-02-25 === Financiadora de Estudos e Projetos === Considering the search for miniaturization of electronic devices, the development of new methods and techniques for the production and characterization of nanostructured materials is fundamental, beyond understanding of the effect of grain size on the properties of materials in nanoscale. Therefore, it was proposed in this work the obtaining of nanostructured multiferroic materials, in bulk, with high density and microstructural control, with grains ranging from micrometer to nanometer scale. To achieve this goal, was developed a methodology for obtaining the powder of lead iron niobate, Pb(Fe1/2Nb1/2)O3 (PFN) and lead iron tungstate, Pb(Fe2/3W1/3)O3 (PFW), with average particle size around 150 nm, contamination-free, minimal agglomeration and with highly reproductive results using the micro-milling technique. Regarding consolidation materials, conventional sintering requires higher temperatures and long holding times for a satisfactory densification, resulting in a grain growth higher than the desired. Through the fast sintering technique, only high heating rates are not sufficient to ensure a satisfactory densification and also inhibit the growth of grains. The obtain nanostructured dense samples with average grain size of approximately 200 nm was only possible using spark plasma sintering technique (SPS), which allows sintering at temperatures corresponding to the intermediate sintering stage, inhibiting the grain growth. PFN and PFW samples obtained through the SPS technique showed high conductivity at room temperature due the extreme reduction suffers in the system plus the use of high current densities during sintering, being necessary the samples oxidation. Through the dielectric characterization, the decrease in grain size of micrometer to nanometer scale results in lower permittivity values in phase transition temperature, besides a peak broadening. Moreover, the SPS technique added to the oxidation process makes it possible to obtain PFW samples with high dielectric values (in order of 104) at room temperature, a motivation results with regard to the application. === Considerando a busca pela miniaturização dos dispositivos eletrônicos é fundamental o desenvolvimento de novos métodos e técnicas para a produção e caracterização de materiais nanoestruturados, além do entendimento do efeito do tamanho de grão sobre as propriedades dos materiais em escala nanométrica. Dessa forma, propôs-se neste trabalho a obtenção de materiais multiferróicos nanoestruturados, na forma de bulk com alta densidade e controle microestrutural, com grãos variando de escala micrométrica a nanométrica. Para alcançar este objetivo, foi desenvolvida uma metodologia para a obtenção de pós de niobato de ferro e chumbo, Pb(Fe1/2Nb1/2)O3 (PFN) e tungstanato de ferro e chumbo, Pb(Fe2/3W1/3)O3 (PFW), com tamanhos médios de partículas em torno de 150 nm, livre de contaminação, mínima aglomeração e com resultados altamente reprodutivos por meio da técnica de micromoagem. Em relação à consolidação dos materiais, o procedimento convencional requer altas temperaturas e longos tempos de patamar para uma densificação satisfatória, resultando em um crescimento de grão superior ao desejado. Por meio da técnica de sinterização rápida fast sintering , somente altas taxas de aquecimento não são suficientes para garantir uma densificação satisfatória bem como inibir o crescimento de grãos. A obtenção de amostras densas nanoestruturadas com tamanhos médio de grão de aproximadamente 200 nm só foi possível utilizando a técnica spark plasma sintering (SPS), que permite a sinterização a temperaturas correspondentes ao estágio intermediário de sinterização, inibindo o crescimento de grãos. As amostras de PFN e PFW obtidas por meio da técnica de SPS apresentaram alta condutividade à temperatura ambiente devido às condições extremas de redução que a amostra sofre somada ao uso de altas densidades de corrente durante a sinterização, sendo necessária a oxidação das mesmas. Através da caracterização dielétrica, verifica-se que a diminuição nos tamanhos de grãos de escala micrométrica para nanométrica resulta em menores valores de permissividade na temperatura de transição de fase, além de um alargamento dos picos. Contudo, a técnica de sinterização SPS somada ao processo de oxidação torna possível a obtenção de amostras de PFW com altos valores de constate dielétrica (na ordem de 104), a temperatura ambiente, resultado extremamente motivador no que diz respeito à aplicação.
author2 Eiras, José Antônio
author_facet Eiras, José Antônio
Nascimento, William Junior do
author Nascimento, William Junior do
author_sort Nascimento, William Junior do
title Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS
title_short Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS
title_full Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS
title_fullStr Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS
title_full_unstemmed Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS
title_sort sinterização de cerâmicas multiferróicas nanoestruturadas de pb(fe1/2nb1/2)o3 e pb(fe2/3w1/3)o3 via spark plasma sintering sps
publisher Universidade Federal de São Carlos
publishDate 2016
url https://repositorio.ufscar.br/handle/ufscar/4960
work_keys_str_mv AT nascimentowilliamjuniordo sinterizacaodeceramicasmultiferroicasnanoestruturadasdepbfe12nb12o3epbfe23w13o3viasparkplasmasinteringsps
_version_ 1718650033324163072
spelling ndltd-IBICT-oai-repositorio.ufscar.br-ufscar-49602018-05-23T20:08:57Z Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS Nascimento, William Junior do Eiras, José Antônio Física do estado sólido Cerâmicas multiferróicas Materiais nanoestruturados Niobato de ferro e chumbo (PFN) Nanostructured ceramics Spark Plasma Sintering PFN PFW CIENCIAS EXATAS E DA TERRA::FISICA Made available in DSpace on 2016-06-02T20:15:28Z (GMT). No. of bitstreams: 1 5160.pdf: 6005480 bytes, checksum: 6aae866e51fab054ffc455e4b0479f2f (MD5) Previous issue date: 2013-02-25 Financiadora de Estudos e Projetos Considering the search for miniaturization of electronic devices, the development of new methods and techniques for the production and characterization of nanostructured materials is fundamental, beyond understanding of the effect of grain size on the properties of materials in nanoscale. Therefore, it was proposed in this work the obtaining of nanostructured multiferroic materials, in bulk, with high density and microstructural control, with grains ranging from micrometer to nanometer scale. To achieve this goal, was developed a methodology for obtaining the powder of lead iron niobate, Pb(Fe1/2Nb1/2)O3 (PFN) and lead iron tungstate, Pb(Fe2/3W1/3)O3 (PFW), with average particle size around 150 nm, contamination-free, minimal agglomeration and with highly reproductive results using the micro-milling technique. Regarding consolidation materials, conventional sintering requires higher temperatures and long holding times for a satisfactory densification, resulting in a grain growth higher than the desired. Through the fast sintering technique, only high heating rates are not sufficient to ensure a satisfactory densification and also inhibit the growth of grains. The obtain nanostructured dense samples with average grain size of approximately 200 nm was only possible using spark plasma sintering technique (SPS), which allows sintering at temperatures corresponding to the intermediate sintering stage, inhibiting the grain growth. PFN and PFW samples obtained through the SPS technique showed high conductivity at room temperature due the extreme reduction suffers in the system plus the use of high current densities during sintering, being necessary the samples oxidation. Through the dielectric characterization, the decrease in grain size of micrometer to nanometer scale results in lower permittivity values in phase transition temperature, besides a peak broadening. Moreover, the SPS technique added to the oxidation process makes it possible to obtain PFW samples with high dielectric values (in order of 104) at room temperature, a motivation results with regard to the application. Considerando a busca pela miniaturização dos dispositivos eletrônicos é fundamental o desenvolvimento de novos métodos e técnicas para a produção e caracterização de materiais nanoestruturados, além do entendimento do efeito do tamanho de grão sobre as propriedades dos materiais em escala nanométrica. Dessa forma, propôs-se neste trabalho a obtenção de materiais multiferróicos nanoestruturados, na forma de bulk com alta densidade e controle microestrutural, com grãos variando de escala micrométrica a nanométrica. Para alcançar este objetivo, foi desenvolvida uma metodologia para a obtenção de pós de niobato de ferro e chumbo, Pb(Fe1/2Nb1/2)O3 (PFN) e tungstanato de ferro e chumbo, Pb(Fe2/3W1/3)O3 (PFW), com tamanhos médios de partículas em torno de 150 nm, livre de contaminação, mínima aglomeração e com resultados altamente reprodutivos por meio da técnica de micromoagem. Em relação à consolidação dos materiais, o procedimento convencional requer altas temperaturas e longos tempos de patamar para uma densificação satisfatória, resultando em um crescimento de grão superior ao desejado. Por meio da técnica de sinterização rápida fast sintering , somente altas taxas de aquecimento não são suficientes para garantir uma densificação satisfatória bem como inibir o crescimento de grãos. A obtenção de amostras densas nanoestruturadas com tamanhos médio de grão de aproximadamente 200 nm só foi possível utilizando a técnica spark plasma sintering (SPS), que permite a sinterização a temperaturas correspondentes ao estágio intermediário de sinterização, inibindo o crescimento de grãos. As amostras de PFN e PFW obtidas por meio da técnica de SPS apresentaram alta condutividade à temperatura ambiente devido às condições extremas de redução que a amostra sofre somada ao uso de altas densidades de corrente durante a sinterização, sendo necessária a oxidação das mesmas. Através da caracterização dielétrica, verifica-se que a diminuição nos tamanhos de grãos de escala micrométrica para nanométrica resulta em menores valores de permissividade na temperatura de transição de fase, além de um alargamento dos picos. Contudo, a técnica de sinterização SPS somada ao processo de oxidação torna possível a obtenção de amostras de PFW com altos valores de constate dielétrica (na ordem de 104), a temperatura ambiente, resultado extremamente motivador no que diz respeito à aplicação. 2016-06-02T20:15:28Z 2013-06-06 2016-06-02T20:15:28Z 2013-02-25 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis NASCIMENTO, William Junior do. Sinterização de cerâmicas multiferróicas nanoestruturadas de Pb(Fe1/2Nb1/2)O3 e Pb(Fe2/3W1/3)O3 via Spark Plasma Sintering SPS . 2013. 138 f. Tese (Doutorado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2013. https://repositorio.ufscar.br/handle/ufscar/4960 por info:eu-repo/semantics/openAccess application/pdf Universidade Federal de São Carlos Programa de Pós-graduação em Física UFSCar BR reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos instacron:UFSCAR