Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência
Submitted by Claudia Berti (claudiabberti@gmail.com) on 2018-06-04T08:46:28Z No. of bitstreams: 2 Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5) Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) === Approved for...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade Federal de São Carlos
2018
|
Subjects: | |
Online Access: | https://repositorio.ufscar.br/handle/ufscar/10119 |
id |
ndltd-IBICT-oai-repositorio.ufscar.br-ufscar-10119 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
Consciência da situação Tomada de decisão Resposta à emergência Aprendizado de máquina Classificação de texto Situation awareness Decision making Emergency response Machine learning Text classification CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO |
spellingShingle |
Consciência da situação Tomada de decisão Resposta à emergência Aprendizado de máquina Classificação de texto Situation awareness Decision making Emergency response Machine learning Text classification CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO Berti, Claudia Beatriz Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
description |
Submitted by Claudia Berti (claudiabberti@gmail.com) on 2018-06-04T08:46:28Z
No. of bitstreams: 2
Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5)
Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) === Approved for entry into archive by Eunice Nunes (eunicenunes6@gmail.com) on 2018-06-04T12:44:18Z (GMT) No. of bitstreams: 2
Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5)
Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) === Approved for entry into archive by Eunice Nunes (eunicenunes6@gmail.com) on 2018-06-04T12:59:57Z (GMT) No. of bitstreams: 2
Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5)
Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) === Made available in DSpace on 2018-06-04T13:00:10Z (GMT). No. of bitstreams: 2
Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5)
Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5)
Previous issue date: 2017-08-28 === Não recebi financiamento === Situation Awareness (SAW) is a concept widely used in areas that require critical decision making, and refers to the ability of an individual or team to perceive, understand and anticipate the future state of a current situation, which is influenced by the dynamicity and critical nature of events. SAW is considered as the main precursor of the decision-making process. In the emergency response area, obtaining and maintaining SAW requires a great effort from the human operator, the cognitive overload required in the activity, high level of stress involving the care, exhaustive shifts that may negatively reflect the care process and consequently the decision process as one all. Decision support systems that address aspects of the SAW can contribute to the enrichment and maintenance of the operator's SAW and in the decision-making process. Given this context, this work presents a Situational Predictive Model to systematize the development of modules to support the human operator's SAW in emergency response systems, which provides for the use of service models and protocols of institutions acting as prototypical situations. Objectively the model proposes the prediction and or the premature identification of the situation while the applicant has emergency assistance. A Conceptual Model was developed that guided the construction of the Predictive Model and will serve as basis for other developments. So-called human sensors and social sensors have become important sources of information especially in social networks. For the treatment of this data, text classifier methods are used with satisfactory results that cover the areas of education, security, entertainment, commercial, among others. For the emergency responses domain, object of this thesis, human sensors are the main source of information and machine learning techniques as text classifiers show important alternatives. In order to be validated, the Predictive Situations Model was implemented with the creation of a vocabulary based on the actual decision-making models of the Military Police of the State of São Paulo (PMESP) and the development of algorithms two classifying methods (Bag of Words and Naïve Bayes). Tests were performed with four different types of input instances (sentences). For all the metrics analyzed (accuracy, accuracy and coverage) the tests demonstrated superiority of the Naïve Bayes algorithm. The difference between the hit rates in relation to the Bag of Word algorithm for the class of instances with the highest degree of identification difficulty was over 37%. These results demonstrated good potential the Predictive Situations Model to collaborate with the existing systems of emergency services, allowing more attendance effectiveness and reduction of the cognitive overload that the attendants are routinely subjected to. === Consciência da situação ou consciência situacional (Situation Awareness – SAW) é um conceito amplamente utilizado em áreas que requerem tomada de decisão crítica, e se refere à habilidade de um indivíduo ou equipe de percepção, compreensão e antecipação de estado futuro de uma situação corrente, que é influenciada pela dinamicidade e natureza crítica de eventos. SAW é considerada como principal precursora do processo decisório. Em domínios, por exemplo, de resposta à emergência, obter e manter SAW requer do operador humano grande esforço, pela sobrecarga cognitiva exigida na atividade, alto nível de estresse que envolve o atendimento, turnos exaustivos que podem refletir negativamente no processo de atendimento e consequentemente no processo decisório como um todo. Sistemas de apoio à tomada de decisão que contemplam aspectos da SAW podem contribuir no enriquecimento e manutenção da SAW do operador e no processo decisório. Diante desse contexto, este trabalho apresenta um Modelo Preditivo de Situações para sistematizar o desenvolvimento de módulos de apoio a SAW de operadores humanos em sistemas de resposta à emergência, que prevê a utilização de modelos de atendimento e protocolos das instituições atuando como situações prototípicas. Objetivamente o modelo propõe a previsão e ou a identificação prematura da situação em tempo real ao atendimento da emergência. Conjuntamente foi desenvolvido um Modelo Conceitual que norteou a construção do Modelo Preditivo e servirá como base a outros desenvolvimentos. Atualmente os denominados sensores humanos e sensores sociais, especialmente de redes sociais, estão sendo utilizados, de forma crescente, como importantes fontes de informação para a melhor compreensão de situações em diferentes áreas de aplicação. No domínio de resposta à emergência, objeto de estudo desta tese, os sensores humanos são a principal fonte de informação, sobre a qual técnicas de aprendizagem de máquina como classificadores de texto foram aplicadas com resultados muito positivos. Para ser validado, o Modelo Preditivo de Situações foi implementado com a criação de um vocabulário baseado nos modelos decisórios reais da Polícia Militar do Estado de São Paulo (PMESP) e com o desenvolvimento de algoritmos de dois métodos classificadores (Bag of Words e Naïve Bayes). Testes foram realizados com quatro tipos diferentes de instâncias de entrada (frases). Para todas as métricas analisadas (precisão, acurácia e cobertura) os testes demostraram superioridade do algoritmo Naïve Bayes. A diferença entre a taxa de acerto em relação ao algoritmo Bag of Word para a classe de instâncias com maior grau de dificuldade de identificação foi superior a 37%. Tais resultados demonstraram bom potencial do Modelo Preditivo de Situações de colaborar com os sistemas já existentes de atendimento emergencial, possibilitando maior efetividade no atendimento e diminuição da sobrecarga cognitiva a que são submetidos os atendentes cotidianamente. |
author2 |
Araujo, Regina Borges de |
author_facet |
Araujo, Regina Borges de Berti, Claudia Beatriz |
author |
Berti, Claudia Beatriz |
author_sort |
Berti, Claudia Beatriz |
title |
Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
title_short |
Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
title_full |
Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
title_fullStr |
Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
title_full_unstemmed |
Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
title_sort |
modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência |
publisher |
Universidade Federal de São Carlos |
publishDate |
2018 |
url |
https://repositorio.ufscar.br/handle/ufscar/10119 |
work_keys_str_mv |
AT berticlaudiabeatriz modelopreditivodesituacoescomoapoioaconscienciasituacionaleaoprocessodecisorioemsistemasderespostaaemergencia AT berticlaudiabeatriz situationspredictivemodelforaidsituationawarenessanddecisionprocessinemergencyresponsesystems |
_version_ |
1718693462808723456 |
spelling |
ndltd-IBICT-oai-repositorio.ufscar.br-ufscar-101192018-06-10T16:26:40Z Modelo preditivo de situações como apoio à consciência situacional e ao processo decisório em sistemas de resposta à emergência Situations predictive model for aid situation awareness and decision process in emergency response systems Berti, Claudia Beatriz Araujo, Regina Borges de Consciência da situação Tomada de decisão Resposta à emergência Aprendizado de máquina Classificação de texto Situation awareness Decision making Emergency response Machine learning Text classification CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO Submitted by Claudia Berti (claudiabberti@gmail.com) on 2018-06-04T08:46:28Z No. of bitstreams: 2 Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5) Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) Approved for entry into archive by Eunice Nunes (eunicenunes6@gmail.com) on 2018-06-04T12:44:18Z (GMT) No. of bitstreams: 2 Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5) Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) Approved for entry into archive by Eunice Nunes (eunicenunes6@gmail.com) on 2018-06-04T12:59:57Z (GMT) No. of bitstreams: 2 Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5) Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) Made available in DSpace on 2018-06-04T13:00:10Z (GMT). No. of bitstreams: 2 Tese_DOC_702806.pdf: 2723844 bytes, checksum: 41136d680ab0e665de58c6e74bbe7fe5 (MD5) Carta Comprovante_DOC_702806.pdf: 377043 bytes, checksum: 09e3818f3e8c5eaed8195aa5beef0112 (MD5) Previous issue date: 2017-08-28 Não recebi financiamento Situation Awareness (SAW) is a concept widely used in areas that require critical decision making, and refers to the ability of an individual or team to perceive, understand and anticipate the future state of a current situation, which is influenced by the dynamicity and critical nature of events. SAW is considered as the main precursor of the decision-making process. In the emergency response area, obtaining and maintaining SAW requires a great effort from the human operator, the cognitive overload required in the activity, high level of stress involving the care, exhaustive shifts that may negatively reflect the care process and consequently the decision process as one all. Decision support systems that address aspects of the SAW can contribute to the enrichment and maintenance of the operator's SAW and in the decision-making process. Given this context, this work presents a Situational Predictive Model to systematize the development of modules to support the human operator's SAW in emergency response systems, which provides for the use of service models and protocols of institutions acting as prototypical situations. Objectively the model proposes the prediction and or the premature identification of the situation while the applicant has emergency assistance. A Conceptual Model was developed that guided the construction of the Predictive Model and will serve as basis for other developments. So-called human sensors and social sensors have become important sources of information especially in social networks. For the treatment of this data, text classifier methods are used with satisfactory results that cover the areas of education, security, entertainment, commercial, among others. For the emergency responses domain, object of this thesis, human sensors are the main source of information and machine learning techniques as text classifiers show important alternatives. In order to be validated, the Predictive Situations Model was implemented with the creation of a vocabulary based on the actual decision-making models of the Military Police of the State of São Paulo (PMESP) and the development of algorithms two classifying methods (Bag of Words and Naïve Bayes). Tests were performed with four different types of input instances (sentences). For all the metrics analyzed (accuracy, accuracy and coverage) the tests demonstrated superiority of the Naïve Bayes algorithm. The difference between the hit rates in relation to the Bag of Word algorithm for the class of instances with the highest degree of identification difficulty was over 37%. These results demonstrated good potential the Predictive Situations Model to collaborate with the existing systems of emergency services, allowing more attendance effectiveness and reduction of the cognitive overload that the attendants are routinely subjected to. Consciência da situação ou consciência situacional (Situation Awareness – SAW) é um conceito amplamente utilizado em áreas que requerem tomada de decisão crítica, e se refere à habilidade de um indivíduo ou equipe de percepção, compreensão e antecipação de estado futuro de uma situação corrente, que é influenciada pela dinamicidade e natureza crítica de eventos. SAW é considerada como principal precursora do processo decisório. Em domínios, por exemplo, de resposta à emergência, obter e manter SAW requer do operador humano grande esforço, pela sobrecarga cognitiva exigida na atividade, alto nível de estresse que envolve o atendimento, turnos exaustivos que podem refletir negativamente no processo de atendimento e consequentemente no processo decisório como um todo. Sistemas de apoio à tomada de decisão que contemplam aspectos da SAW podem contribuir no enriquecimento e manutenção da SAW do operador e no processo decisório. Diante desse contexto, este trabalho apresenta um Modelo Preditivo de Situações para sistematizar o desenvolvimento de módulos de apoio a SAW de operadores humanos em sistemas de resposta à emergência, que prevê a utilização de modelos de atendimento e protocolos das instituições atuando como situações prototípicas. Objetivamente o modelo propõe a previsão e ou a identificação prematura da situação em tempo real ao atendimento da emergência. Conjuntamente foi desenvolvido um Modelo Conceitual que norteou a construção do Modelo Preditivo e servirá como base a outros desenvolvimentos. Atualmente os denominados sensores humanos e sensores sociais, especialmente de redes sociais, estão sendo utilizados, de forma crescente, como importantes fontes de informação para a melhor compreensão de situações em diferentes áreas de aplicação. No domínio de resposta à emergência, objeto de estudo desta tese, os sensores humanos são a principal fonte de informação, sobre a qual técnicas de aprendizagem de máquina como classificadores de texto foram aplicadas com resultados muito positivos. Para ser validado, o Modelo Preditivo de Situações foi implementado com a criação de um vocabulário baseado nos modelos decisórios reais da Polícia Militar do Estado de São Paulo (PMESP) e com o desenvolvimento de algoritmos de dois métodos classificadores (Bag of Words e Naïve Bayes). Testes foram realizados com quatro tipos diferentes de instâncias de entrada (frases). Para todas as métricas analisadas (precisão, acurácia e cobertura) os testes demostraram superioridade do algoritmo Naïve Bayes. A diferença entre a taxa de acerto em relação ao algoritmo Bag of Word para a classe de instâncias com maior grau de dificuldade de identificação foi superior a 37%. Tais resultados demonstraram bom potencial do Modelo Preditivo de Situações de colaborar com os sistemas já existentes de atendimento emergencial, possibilitando maior efetividade no atendimento e diminuição da sobrecarga cognitiva a que são submetidos os atendentes cotidianamente. 2018-06-04T13:00:10Z 2018-06-04T13:00:10Z 2017-08-28 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/doctoralThesis https://repositorio.ufscar.br/handle/ufscar/10119 por info:eu-repo/semantics/openAccess Universidade Federal de São Carlos Câmpus São Carlos Programa de Pós-graduação em Ciência da Computação UFSCar reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos instacron:UFSCAR |