Identificação de padrões em gráficos de controle estatístico de processos, em tempo real, utilizando séries temporais e redes neurais artificiais

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. === Made available in DSpace on 2012-10-17T11:50:40Z (GMT). No. of bitstreams: 0Bitstream added on 2013-07-16T17:44:58Z : No. of bitstreams: 1 175131.pdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) ==...

Full description

Bibliographic Details
Main Author: Balestrassi, Pedro Paulo
Other Authors: Universidade Federal de Santa Catarina
Format: Others
Language:Portuguese
Published: Florianópolis, SC 2012
Subjects:
Online Access:http://repositorio.ufsc.br/xmlui/handle/123456789/78244
Description
Summary:Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. === Made available in DSpace on 2012-10-17T11:50:40Z (GMT). No. of bitstreams: 0Bitstream added on 2013-07-16T17:44:58Z : No. of bitstreams: 1 175131.pdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) === O presente trabalho procurou implementar um sistema semi-automatizado de Controle Estatístico de Processos (CEP) para dados obtidos em tempo real. Tal sistema abrange um grande escopo de aplicações pois aplica-se tanto para processos serialmente correlacionados como para processos identicamente e independentemente distribuídos (iid). No sistema proposto, os dados são obtidos a partir de sensores em um processo automatizado qualquer. Em seguida esses dados são modelados e são gerados um conjunto de resíduos. Sobre esses resíduos atua uma rede neural, treinada off line, que faz o reconhecimento de padrões de uma carta de controle estatístico de processos em tempo real. O processo pode ser a qualquer momento remodelado para uma nova série de dados ou escolhendo-se um modelo testado anteriormente. Tal sistema foi parcialmente testado em relação a sistemas convencionais e várias medidas de desempenho mostraram resultados satisfatórios. Todo o sistema foi inteiramente simulado por computador e as rotinas computacionais são disponibilizadas para futuros aperfeiçoamentos e comparações. Uma aplicação real foi avaliada abordando um problema de reconhecimento de padrões da atividade eletrencefalográfica do cérebro.