Summary: | Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduaçao em Engenharia Mecânica, Florianópolis, 2016. === Made available in DSpace on 2016-09-20T04:58:26Z (GMT). No. of bitstreams: 1
341692.pdf: 5615058 bytes, checksum: 8111774b060367665a927d02bdb25ce7 (MD5)
Previous issue date: 2016 === Turbinas a gás aeronáuticas combinam uma alta relação potência/peso, desempenho eficiente e confiabilidade. Em uma câmara de combustão típica de turbinas aeronáuticas, é comum observar temperaturas de ad-missão da ordem de 750 K, pressões de 20 bar e velocidades média do escoamento de 100 m/s. Fenômenos de fase gasosa que limitam as taxas de combustão, durabilidade e emissões, afetando negativamente o de-sempenho da máquina, incluem os fenômenos da extinção de chama turbulenta, Blow-off para misturas pobres e Relight. A legislação sobre o tema tem avançado no sentido de impor o aumento na adição de bio-combustíveis na indústria da aviação, como por exemplo a utilização de biocombustível tipo HEFA (Hydro-Processed Ester Fatty Acid). Este trabalho enfoca o efeito da adição de um tipo de biocombustível HEFA ao QAV1 (querosene de aviação), criando uma mixtura de combustível alternativo para aviação comercial. Para tanto, foi utilizado uma mistura substituta para reproduzir as caracteristícas físico-químicas de um que-rosene de aviação sintético tipo HEFA. Experimentos com metodologia canônica foram então utilizados para medir tempo de retardo de ignição, limite de inflamabilidade para misturas laminares, propação de chamas laminares e turbulentas e extinção de núcleo da chama (flame kernel) sob condições turbulentas. O tempo de retardo de ignição foi medido utilizando-se uma máquina de compressão rápida (RCM) para mixturas com razão de equivalência entre 0,3 até 1,3, pressões de 7 bar, 10 bar e 15 bar e temperaturas variando entre 650 K até 950 K. A ignição força-da, a propação e extinção de chama foram medidos utilizando-se dois reatores de volume contante (CVR). Um CVR esférico com volume de 15 litros foi utilizado para detectar ignição, utilizando um sistema de fotografia de alta velocidade Schlieren Tipo Z usando uma câmera CMOS capaz de obter 10.000 fotos por segundo. O mesmo CVR foi também utilizado para medir a velocidade de chama laminar aplicando o método da medição do perfil transiente de pressão interna do reator, para misturas com razão de equivalência entre 0,8 até 1,3, pressão inicial de 1 bar e temperatura inicial de 408 K. Com o objetivo de obter a velocidade de chama diretamente da curva de pressão transiente, desenvolveu-se um código computacional em linguagem FORTRAN, assumindo hipóte-se de gás ideal, equilíbrio termodinâmico e sucessivas compressões isentrópicas para reagentes e produtos. A propagação e extinção de chamas turbulentas foram medidos utilizando-se um CVR cilíndrico com volume de 55 litros, para mixturas com razão de equivalência entre 0,8 até 1,3, pressão inicial de 1 bar e temperatura inicial de 310 K. Aexistência de um núclo inicial de chama foi detectado utilizando-se uma câmera do tipo ICCD, e subsequentemente, o perfil transiente de pressão foi medido para o cálculo da velocidade de chama turbulenta. Os resul-tados mostraram um aumento da velocidade de chama laminar entre 5-7% com a utilização do bio-aditivo. A velocidade de chama turbulenta apresentou um menor percentual de aumento, aproximadamente 2% para os maiores níveis de turbulência testados. O tempo de retardo de ignição e o limite inferior de inflamabilidade diminuiram aproximada-mente 3% com a utilização do bio-aditivo, reduzindo assim também as limitações de operacionalidade devido a extinção de chama turbulenta. A análise conjunta das taxas de propagação de chama, ignição, limites de inflamabilidade e extinção de chama turbulenta indicaram um sensí-vel aumento na estabilidade operacional de turbinas a gás aeronáuticas sob as condições testadas com a adição do biocombustível substituto.<br> === Abstract : Jet engines combine a high power to weight ratio with efficient perfor-mance and reliable operation. In the combustion chamber of typical jet engines, inlet temperatures of 750 K, pressure of 20 bar and axial flow velocities of 100 m/s are common. Gas phase phenomena that limit the combustion rate, durability and emissions, affecting negatively the en-gine performance, include turbulent flame extinction, lean blow-off, and relight. Legislation recently advanced has enforced the increase in the content of biofuels in the aviation industry, such as the use of HEFA (hydro-processed ester fatty acid) fuels. This work focus on the effect of the addition of a HEFA biofuel to the Brazilian Jet A-1 fuel, creating alternative jet fuel mixtures. Here, a surrogate fuel mixture was used to reproduce the basic combustion physicochemical characteristics of a HEFA based aviation fuel. Then, canonical experiments were used to measure ignition delay time, laminar flammability limits, laminar and turbulent flame propagation and extinction. Ignition delay time was measured in a rapid compression machine (RCM) for equivalence ratios from 0.3 to 1.3, pressures of 7 bar, 10 bar and 15 bar, and temperatures from 650 K to 950 K. Flame ignition, propagation and extinction were measured using two constant volume reactors (CVR). A 15 liters, spher-ical CVR with optical access was used to detect ignition, using a Z-type Schlieren photography with a 10000 fps CMOS camera, and to measure the laminar flame speed from the pressure transient trace, for equiva-lence ratio from 0.8 to 1.3, pressure of 1 bar, and temperature of 408 K. In order to predict the burning velocity from the pressure trace, a FOR-TRAN code was written assuming the products in full equilibrium and both, reactants and products, are treated as ideal gases and follow isen-tropic compression. Turbulent flame propagation and extinction was measured for methane and PRF fuel using a 55 liters, cylindrical, turbu-lent CVR for equivalence ratio of 0.8 to 1.3, pressure of 1 bar, and tem-perature of 300 K and 310 K. The existence of a flame kernel was de-tected using an ICCD camera and, following combustion, the transient pressure trace was measured. The results show the laminar flame speed has increased about 5-7% with the biofuel additive. The turbulent flame speed has a lower increase of about 2% at the higher turbulence intensi-ties tested. The ignition delay time and the lower flammability limit decreased in about 3% with the addition of the biofuel surrogate, thus reducing the limitations on turbulent flame kernel extinguishment. The joint behavior in terms of burning rates, ignition, flammability limits, and turbulent flame kernel extinguishment indicated a slight increase inthe jet engine operational stability under the conditions tested with the use of the biofuel surrogate.
|