Modelo energ?tico auto-organizado para a atividade coletiva em tecidos de animais simples

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-10-04T22:24:00Z No. of bitstreams: 1 MichelleCristinaVarelaDosSantos_DISSERT.pdf: 2578443 bytes, checksum: cbf87aab557f25c12ac2e240f11654b7 (MD5) === Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com...

Full description

Bibliographic Details
Main Author: Santos, Michelle Cristina Varela dos
Other Authors: 36990485000
Language:Portuguese
Published: PROGRAMA DE P?S-GRADUA??O EM CI?NCIAS BIOL?GICAS 2017
Subjects:
Online Access:https://repositorio.ufrn.br/jspui/handle/123456789/24060
Description
Summary:Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-10-04T22:24:00Z No. of bitstreams: 1 MichelleCristinaVarelaDosSantos_DISSERT.pdf: 2578443 bytes, checksum: cbf87aab557f25c12ac2e240f11654b7 (MD5) === Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-10-13T21:55:18Z (GMT) No. of bitstreams: 1 MichelleCristinaVarelaDosSantos_DISSERT.pdf: 2578443 bytes, checksum: cbf87aab557f25c12ac2e240f11654b7 (MD5) === Made available in DSpace on 2017-10-13T21:55:18Z (GMT). No. of bitstreams: 1 MichelleCristinaVarelaDosSantos_DISSERT.pdf: 2578443 bytes, checksum: cbf87aab557f25c12ac2e240f11654b7 (MD5) Previous issue date: 2017-03-30 === Entre o final do s?culo XX e in?cio do s?culo XXI, muitos cientistas passaram a se interessar na din?mica de sistemas complexos e os fen?menos envolvidos, tais como, os sistemas cr?ticos. Esses sistemas n?o-lineares apresentam propriedades descritas por leis de pot?ncia. Fen?menos cr?ticos constituem sistemas complexos, que n?o possuem propriedades bem descritas pelas leis da termodin?mica. O presente trabalho apresenta um modelo energ?tico critico auto-organizado, ou seja, que possui Criticalidade Auto-Organizada (SOC), criado para explicar a atividade coletiva espont?nea em um tecido animal sem a necessidade de um controle muscular ou de sistema nervoso central. O modelo prot?tipo descreve um tecido epitelial cuboide formado por uma ?nica camada de c?lulas, como a cavidade digestiva interna de alguns animais simples ou primitivos. O tecido ? composto por c?lulas que absorvem nutrientes e armazenam energia, com probabilidade p, para participar de atividade do tecido. Cada c?lula pode estar em dois estados: o de alta energia capaz de se tornar ativa ou de baixo consumo metab?lico e em repouso. Qualquer c?lula pode ser ativada espontaneamente, com uma probabilidade muito baixa, e ent?o propagar uma atividade coletiva entre seus vizinhos que compartilham energia suficiente. As c?lulas do tecido que participam da atividade consomem toda a sua energia. Foi observada uma rela??o tipo lei de pot?ncia, P(s) ? s?, para a probabilidade de ter um movimento coletivo de tamanho s. A constru??o deste modelo ? an?logo ao modelo Forest Fire Model. Essa abordagem produz naturalmente um estado cr?tico para a atividade do tecido animal, al?m de explicar a auto sustenta??o das atividades em um tecido animal vivo sem controle de feedback. === Since the end of the twentieth century and the beginning of the twenty-first century, many scientists have become interested in the study of the dynamics of complex systems and in critical systems. This class of non-linear systems has properties described by power laws. Critical phenomena is characteristics of complex systems that has properties not well described by the laws of thermodynamics. The present work presents a self-organized critical (SOC) energy model, created to explain spontaneous collective activity in a given animal tissue without the necessity of a muscular control or central nervous system. This prototype model introduces a cuboid epithelial tissue formed by a single layer of cells, such as the internal digestive cavity of some primitive animals. The tissue is composed of cells that absorb nutrients and store energy, with probability p, to participate in a collective tissue motion. Each cell can be in two states: the high-energy state able to become active or low-metabolic and at rest. Any cell can be activated spontaneously, with a very low probability, and starts a collective activity with its neighbors that share enough energy. The tissue cells that participate in the oscillation consume all their energy. It is observed a power law relation, P(s) ? s?, for the probability of having a collective motion with s cells. The construction of this model is analogous to the Forest Fire SOC model. This approach naturally produces a critical condition for the oscillation of the animal tissue, in addition, it explains self-sustaining activities in a living animal tissue without feedback control.