Implementa??o e aplica??o de algoritmos de aprendizado em um sistema neuro-simb?lico

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-04-03T19:47:14Z No. of bitstreams: 1 AndreQuintilianoBezerraSilva_DISSERT.pdf: 6705778 bytes, checksum: 90ff28923ed0270632f9a0851890a75a (MD5) === Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br...

Full description

Bibliographic Details
Main Author: Silva, Andr? Quintiliano Bezerra
Other Authors: 42046637100
Language:Portuguese
Published: PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA EL?TRICA E DE COMPUTA??O 2017
Subjects:
Online Access:https://repositorio.ufrn.br/jspui/handle/123456789/22563
Description
Summary:Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-04-03T19:47:14Z No. of bitstreams: 1 AndreQuintilianoBezerraSilva_DISSERT.pdf: 6705778 bytes, checksum: 90ff28923ed0270632f9a0851890a75a (MD5) === Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-04-05T21:51:32Z (GMT) No. of bitstreams: 1 AndreQuintilianoBezerraSilva_DISSERT.pdf: 6705778 bytes, checksum: 90ff28923ed0270632f9a0851890a75a (MD5) === Made available in DSpace on 2017-04-05T21:51:32Z (GMT). No. of bitstreams: 1 AndreQuintilianoBezerraSilva_DISSERT.pdf: 6705778 bytes, checksum: 90ff28923ed0270632f9a0851890a75a (MD5) Previous issue date: 2017-02-14 === Um dos principais objetivos da intelig?ncia artificial ? a cria??o de agentes inspirados na intelig?ncia humana. Isso vem sendo pesquisado utilizando v?rias abordagens, e entre as mais promissoras para o aprendizado de m?quinas est?o os sistemas simb?licos baseados na l?gica e as redes neurais artificiais. At? a ?ltima d?cada, ambas as abordagens progrediam de forma independente, mas os progressos obtidos em ambas as ?reas fizeram com que os pesquisadores come?assem a investigar maneiras de integrar as duas t?cnicas. Diversos modelos que proporcionam a integra??o h?brida ou integrada desses m?todos inteligentes surgiram na d?cada de 90 e continuam sendo utilizadas e melhoradas at? hoje. Esse trabalho tem como objetivo principal a implementa??o e uso do algoritmo de convers?o neuro-simb?lica do sistema h?brido Knowledge-Based Artificial Neural Networks (KBANN). O sistema possui a capacidade de mapear um dom?nio te?rico espec?fico de regras (se-ent?o) em uma rede neural e refinar a rede utilizando t?cnicas de aprendizado. Al?m disso, como o algoritmo criado por Towell et al. (1990) n?o possui a capacidade de adquirir novos conhecimentos sem distorcer o que j? foi aprendido, utilizou-se o algoritmo TopGen (Optiz e Shavlik, 1995) para adicionar tal capacidade a rede. O trabalho utilizou um jogo de tabuleiro para realizar experimentos devido a quantidade e o conhecimento existente sobre as regras do jogo. O sistema implementado obteve resultados interessantes, mesmo com a pertuba??o do dom?nio inicial de regras (com a exclus?o parcial), obtendo uma taxa de acerto pr?xima a 100%. Portanto, a partir dos resultados obtidos foi poss?vel concluir que o sistema h?brido ? capaz de se sobrepor a situa??es adversas a qual foi submetido nessa pesquisa. === One of the main goals of artificial intelligence is the creation of agents with humanlike intelligence. This has been researched using various approaches, and among the most prominent for machine learning are logic-based symbolic systems and artificial neural networks. Until the last decade, both approaches have progressed independently, but progress in both areas has led researchers to investigate ways to integrate both approaches. Several models that provide hybrid or integrated integration of these approaches emerged in the 1990s, and continue to be used to this day. This work has as main objective the implementation and use of the Neural-Symbolic conversion algorithm of Knowledge-Based Artificial Neural Networks (KBANN), the system has the ability to map a specific theoretical domain of rules (if-then) into a neural network, and refine the network using learning techniques. In addition, since the algorithm created by (Towell et al., 1990) does not have the capacity to acquire new knowledge and introduce them to the neural network, the algorithm TopGen (Optiz and Shavlik, 1995) will be used to add The network without losing the original knowledge acquired. The work used a board game to conduct experiments due to the well established rules of the game. The implemented system obtained interesting results, even with the initial rule domain perturbation (with the exclusion of them), obtaining an accuracy rate close to 100 %. Therefore, from the obtained results it was possible to conclude that the hybrid systems are able to overlap to adverse situations which were carried out the analyzes proposed in this research.