Um estudo sobre polin?mios matriciais
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-07-25T23:16:56Z No. of bitstreams: 1 MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5) === Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.c...
Main Author: | |
---|---|
Other Authors: | |
Language: | Portuguese |
Published: |
Universidade Federal do Rio Grande do Norte
2016
|
Subjects: | |
Online Access: | http://repositorio.ufrn.br/handle/123456789/21098 |
id |
ndltd-IBICT-oai-repositorio.ufrn.br-123456789-21098 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IBICT-oai-repositorio.ufrn.br-123456789-210982018-05-23T23:27:44Z Um estudo sobre polin?mios matriciais Lima, M?rcia Gabriele Gon?alves de Sousa 31502482053 http://lattes.cnpq.br/0470193971644313 Cohen, Nir 21402190824 http://lattes.cnpq.br/7895700958229353 Rosa, Maria Cec?lia dos Santos 00000000000 Pereira, Edgar Silva CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA APLICADA E ESTAT?STICA Polin^omio matricial Solvente Bloco autovalor M?todo da pot?ncia Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-07-25T23:16:56Z No. of bitstreams: 1 MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5) Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-08-04T21:49:11Z (GMT) No. of bitstreams: 1 MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5) Made available in DSpace on 2016-08-04T21:49:11Z (GMT). No. of bitstreams: 1 MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5) Previous issue date: 2015-10-29 Esse trabalho de pesquisa tem por objetivo, fazer um estudo sobre a teoria alg?brica dos polin?mios matriciais m?nicos, bem como das defini??es, conceitos e propriedades de no que diz respeito a bloco autovalores, bloco autovetores e solventes de P(X). Investigando as principais rela??es entre o polin?mio matricial e as matrizes bloco. Companheira e bloco Vandermonde. Estudamos a constru??o de polin?mios matriciais com determinados solventes e a extens?on da M?todo da Pot?ncia , para calcular blocos autovalores da matriz Companheira e solventes de P(X). Atrav?s da rela??o entre o bloco autovalor dominante da matriz Companheira e o solvente dominante de P(X) ? poss?vel obtermos a converg?ncia do algoritmo para o solvente dominante do polin?mio matricial m?nico. Ilustramos com exemplos num?ricos para casos distintos de converg?ncia. This research work aims to make a study of the algebraic theory of matrix monic polynomials, as well as the definitions, concepts and properties with respect to block eigenvalues, block eigenvectors and solvents of P(X). We investigte the main relations between the matrix polynomial and the Companion and Vandermonde matrices. We study the construction of matrix polynomials with certain solvents and the extention of the Power Method, to calculate block eigenvalues and solvents of P(X). Through the relationship between the dominant block eigenvalue of the Companion matrix and the dominant solvent of P(X) it is possible to obtain the convergence of the algorithm for the dominant solvent of the matrix polynomial. We illustrate with numerical examples for diferent cases of convergence. 2016-08-04T21:49:11Z 2016-08-04T21:49:11Z 2015-10-29 info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis LIMA, M?rcia Gabriele Gon?alves de Sousa. Um estudo sobre polin?mios matriciais. 2015. 60f. Disserta??o (Mestrado em Matem?tica Aplicada e Estat?stica) - Centro de Ci?ncias Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2015. http://repositorio.ufrn.br/handle/123456789/21098 por info:eu-repo/semantics/openAccess Universidade Federal do Rio Grande do Norte PROGRAMA DE P?S-GRADUA??O EM MATEM?TICA APLICADA E ESTAT?STICA UFRN Brasil reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte instacron:UFRN |
collection |
NDLTD |
language |
Portuguese |
sources |
NDLTD |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA APLICADA E ESTAT?STICA Polin^omio matricial Solvente Bloco autovalor M?todo da pot?ncia |
spellingShingle |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA APLICADA E ESTAT?STICA Polin^omio matricial Solvente Bloco autovalor M?todo da pot?ncia Lima, M?rcia Gabriele Gon?alves de Sousa Um estudo sobre polin?mios matriciais |
description |
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-07-25T23:16:56Z
No. of bitstreams: 1
MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5) === Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-08-04T21:49:11Z (GMT) No. of bitstreams: 1
MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5) === Made available in DSpace on 2016-08-04T21:49:11Z (GMT). No. of bitstreams: 1
MarciaGabrieleGoncalvesDeSousaLima_DISSERT.pdf: 503985 bytes, checksum: 91a629d4653d03d67f3bd647b545c778 (MD5)
Previous issue date: 2015-10-29 === Esse trabalho de pesquisa tem por objetivo, fazer um estudo sobre a teoria alg?brica dos polin?mios matriciais m?nicos, bem como das defini??es, conceitos e propriedades de no que diz respeito a bloco autovalores, bloco autovetores e solventes de P(X). Investigando as principais rela??es entre o polin?mio matricial e as matrizes bloco. Companheira e bloco Vandermonde. Estudamos a constru??o de polin?mios matriciais com determinados solventes e a extens?on da M?todo da Pot?ncia , para calcular blocos autovalores da matriz Companheira e solventes de P(X). Atrav?s da rela??o entre o bloco autovalor dominante da matriz Companheira e o solvente dominante de P(X) ? poss?vel obtermos a converg?ncia do algoritmo para o solvente dominante do polin?mio matricial m?nico. Ilustramos com exemplos num?ricos para casos distintos de converg?ncia. === This research work aims to make a study of the algebraic theory of matrix monic
polynomials, as well as the definitions, concepts and properties with respect to block
eigenvalues, block eigenvectors and solvents of P(X). We investigte the main relations
between the matrix polynomial and the Companion and Vandermonde matrices. We study
the construction of matrix polynomials with certain solvents and the extention of the Power
Method, to calculate block eigenvalues and solvents of P(X). Through the relationship
between the dominant block eigenvalue of the Companion matrix and the dominant solvent of
P(X) it is possible to obtain the convergence of the algorithm for the dominant solvent of the
matrix polynomial. We illustrate with numerical examples for diferent cases of convergence. |
author2 |
31502482053 |
author_facet |
31502482053 Lima, M?rcia Gabriele Gon?alves de Sousa |
author |
Lima, M?rcia Gabriele Gon?alves de Sousa |
author_sort |
Lima, M?rcia Gabriele Gon?alves de Sousa |
title |
Um estudo sobre polin?mios matriciais |
title_short |
Um estudo sobre polin?mios matriciais |
title_full |
Um estudo sobre polin?mios matriciais |
title_fullStr |
Um estudo sobre polin?mios matriciais |
title_full_unstemmed |
Um estudo sobre polin?mios matriciais |
title_sort |
um estudo sobre polin?mios matriciais |
publisher |
Universidade Federal do Rio Grande do Norte |
publishDate |
2016 |
url |
http://repositorio.ufrn.br/handle/123456789/21098 |
work_keys_str_mv |
AT limamrciagabrielegonalvesdesousa umestudosobrepolinmiosmatriciais |
_version_ |
1718672323581575168 |