Incorpora??o do v?nculo de suavidade no ajuste de hist?rico de reservat?rios de petr?leo

Made available in DSpace on 2015-03-13T17:08:22Z (GMT). No. of bitstreams: 1 Flavio_LS.pdf: 1955029 bytes, checksum: 8e0fa408c324ef805ccd084d89be3a06 (MD5) Previous issue date: 2005-07-15 === Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico === The history match procedure in an oil re...

Full description

Bibliographic Details
Main Author: Santana, Flavio Lemos de
Other Authors: CPF:90376285400
Format: Others
Language:Portuguese
Published: Universidade Federal do Rio Grande do Norte 2015
Subjects:
Online Access:http://repositorio.ufrn.br:8080/jspui/handle/123456789/18779
Description
Summary:Made available in DSpace on 2015-03-13T17:08:22Z (GMT). No. of bitstreams: 1 Flavio_LS.pdf: 1955029 bytes, checksum: 8e0fa408c324ef805ccd084d89be3a06 (MD5) Previous issue date: 2005-07-15 === Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico === The history match procedure in an oil reservoir is of paramount importance in order to obtain a characterization of the reservoir parameters (statics and dynamics) that implicates in a predict production more perfected. Throughout this process one can find reservoir model parameters which are able to reproduce the behaviour of a real reservoir.Thus, this reservoir model may be used to predict production and can aid the oil file management. During the history match procedure the reservoir model parameters are modified and for every new set of reservoir model parameters found, a fluid flow simulation is performed so that it is possible to evaluate weather or not this new set of parameters reproduces the observations in the actual reservoir. The reservoir is said to be matched when the discrepancies between the model predictions and the observations of the real reservoir are below a certain tolerance. The determination of the model parameters via history matching requires the minimisation of an objective function (difference between the observed and simulated productions according to a chosen norm) in a parameter space populated by many local minima. In other words, more than one set of reservoir model parameters fits the observation. With respect to the non-uniqueness of the solution, the inverse problem associated to history match is ill-posed. In order to reduce this ambiguity, it is necessary to incorporate a priori information and constraints in the model reservoir parameters to be determined. In this dissertation, the regularization of the inverse problem associated to the history match was performed via the introduction of a smoothness constraint in the following parameter: permeability and porosity. This constraint has geological bias of asserting that these two properties smoothly vary in space. In this sense, it is necessary to find the right relative weight of this constrain in the objective function that stabilizes the inversion and yet, introduces minimum bias. A sequential search method called COMPLEX was used to find the reservoir model parameters that best reproduce the observations of a semi-synthetic model. This method does not require the usage of derivatives when searching for the minimum of the objective function. Here, it is shown that the judicious introduction of the smoothness constraint in the objective function formulation reduces the associated ambiguity and introduces minimum bias in the estimates of permeability and porosity of the semi-synthetic reservoir model === O processo de ajuste de hist?rico de produ??o em um reservat?rio de petr?leo ? de fundamental import?ncia para que se possa obter uma caracteriza??o dos par?metros do reservat?rio (est?ticos e din?micos) que implique em uma previs?o de produ??o mais acurada. Atrav?s deste processo pode-se encontrar par?metros para um modelo de reservat?rio que sejam capazes de reproduzir o comportamento do reservat?rio real. Assim, esse modelo de reservat?rio pode ser utilizado em previs?es de produ??o e no aux?lio ao gerenciamento do campo de ?leo/g?s. No processo de ajuste de hist?rico, os par?metros do modelo do reservat?rio s?o modificados e para cada modelo com o novo conjunto de par?metros, uma simula??o de fluxo ? realizada para que se possa avaliar se este conjunto reproduz ou n?o as curvas de produ??o de um reservat?rio real. O reservat?rio ? ajustado quando as discrep?ncias entre as previs?es do modelo de reservat?rio e a do reservat?rio real s?o abaixo de certa toler?ncia. Determinar um modelo de reservat?rio por meio do processo de ajuste de hist?rico requer a minimiza??o de uma fun??o objetivo (diferen?a entre a produ??o observada e simulada) em um espa?o de par?metros que em geral possui muitos m?nimos, ou seja, mais de um modelo de reservat?rio ajusta as observa??es. No sentido da n?o-unicidade da solu??o, o problema inverso associado ao processo de ajuste de hist?rico ? mal-posto. A fim de reduzir esta ambig?idade e regularizar o problema, ? necess?ria a incorpora??o de informa??es a priori e de v?nculos nos par?metros do reservat?rio a serem determinados. Neste trabalho, a regulariza??o do problema inverso associado ao ajuste de hist?rico foi realizada por meio da introdu??o de um v?nculo de suavidade nos par?metros: porosidade e permeabilidade, de um reservat?rio. Esse v?nculo possui o vi?s geol?gico de que os valores de porosidade e permeabilidade variam suavemente ao longo do reservat?rio. Nesse sentido, ? necess?rio encontrar um valor do peso deste v?nculo, na fun??o objetivo, que estabilize o problema e ainda introduza nos par?metros do modelo de reservat?rio o menor vi?s geol?gico poss?vel